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Abstract

Access control for databases is typically enforced by
a trusted server responsible for permitting or denying
users access to the database. This server-based protec-
tion model is increasingly becoming inconvenient for
web based applications. We propose encryption tech-
niques that allow XML documents to be distributed
over the web to clients for local processing while main-
taining certain access controls. In particular, we fo-
cus on conditional access controls, where a user is
granted access to certain data elements conditioned
on the user’s existing knowledge of another part of the
data. We believe such access controls are important
in practice, and that enforcing them cryptographically
on remote instances allows for more flexible data dis-
semination and processing.

1 Introduction

An access control model is used to permit or refuse
access by subjects to data objects. Subjects are users,
or groups of users usually defined by name, network
identification or other static affiliation. For XML, ob-
jects are documents or parts of documents defined
by XPath expressions. Access control in relational
database systems, and most proposed XML systems,
is enforced by a server that handles all data requests
and strictly controls which users can access what data.
While this model is sometimes also used in Web ap-
plications, it is often too restrictive. As the following
examples show, there are a number of advantages to
delivering remote copies of the data to clients if access
control can be maintained:

Local data processing A credit card company’s
accounts database is secret, but if a vendor presents a
correct account number and a correct expiration date
the company will provide the available credit amount.
Vendors could benefit if they downloaded the entire
database locally: transactions could be authenticated
faster and without network access, or vendors could in-
tegrate the data with their own data and run complex
queries, e.g. for marketing purposes. No information

would be leaked if vendors only accessed accounts for
which they know the account number and expiration
date.

Privacy An information provider that sells valuable
data offers different data access rights for different
prices. Customer queries are answered by the provider
only if the customer has sufficient access rights. But
a client’s queries may reveal to the provider privileged
information they prefer not to disclose!. Remote en-
forcement of access control will allow the provider to
deliver an entire copy of the data so that clients can
process queries locally, with privacy guaranteed.

Offline browsing A Web vendor does not make
its products database available to the public, but, of
course, allows users to browse and query for specific
products. The vendor would benefit from making the
database available publicly since users could download
the data to their laptop and shop offline, e.g. during
a plane trip.

Peer Data Mananagement Systems In a
peer-to-peer distributed database, peers contribute
data as well storage and processing resources, and
members of the network can execute queries over
all contributed data [12, 17]. Proposed systems
require that replicas of the data be placed outside the
producers’ secure domains, yet data producers need
to retain some access control over their data while.
Remote enforcement of access controls makes this
possible, and encourages peers to share data.

We propose an approach for publishing XML data
on the Web while controlling how the data is accessed.
In particular, we propose a novel and flexible language
of conditional access rules used to define security pol-
icy. We explain how to encrypt XML data to enforce
these access controls without a trusted server, and we
discuss query processing over encrypted data.

Our notion of conditional access generalizes the
static categorization of subjects into authorization

1Private information retrieval, or the problem of allowing a
subject to query a remote database without revealing informa-
tion through his/her queries, was first addressed in [5].



classes. Subjects are not identified by user name or
network identifier but by their knowledge. As a spe-
cial case, access may be conditioned on knowledge of
a private key or password in a conventional way. But
more generally, subjects qualify for access to an object
by virtue of their knowledge of the data. Conditional
access rules specify what data values need to be pre-
sented by the subject before granting access to other
data values. Subject authorization is therefore flexible
and dynamic in a way not possible with conventional
access classes. The flexibility of our conditional access
rules distinguishes our work from other attempts to
encrypt data and manage decryption keys [2, 15].

Our cryptographic enforcement of conditional poli-
cies is based on known techniques for encrypting re-
lation tables[10]. However, we view it as critical that
remote access control be implemented for XML docu-
ments, rather than relations, since relations are rarely
exchanged as such.

Trusting the encryption mechanism to enforce ac-
cess controls on remote replicas is a substantial de-
parture from server-based enforcement. Some appli-
cations surely require a higher level of trust in the se-
curity mechanism and will need to rely on the server
model. On the other hand, there are many applica-
tions where releasing proprietary data to customers
and partners is very beneficial. Our approach targets
these applications, and creates opportunities for free
data dissemination and new processing models.

The paper is organized as follows. In section 2 we
review encryption primitives and present a simple ta-
ble encryption scheme which is the basis of our doc-
ument encryption method. Section 3 presents con-
ditional access rules. In Section 4 we show how to
generate an encrypted XML instance enforcing a set
of conditional access rules, and then briefly discuss
querying such an instance in Section 5. Overall secu-
rity is reviewed in Section 6. We address related work
and conclude in Sections 7 and 8.

2 Background

We present here known techniques for encrypting a re-
lational table to enforce certain access controls. Later
we adapt table encryption to enforce conditional ac-
cess to XML data. We begin with definitions of en-
cryption primitives used below [14].

Encryption Primitives Let M be the message
space of plain text strings and C the cipher text space.
A symmetric encryption scheme consists (for each key
k) of an encryption function Ej, : M — C and a cor-
responding decryption function Dy, : C — M with the
property that for all m € M, Dy(Eg(m)) = m. An

encryption scheme is secure if it is computationally in-
feasible to deduce m from Ejy(m) without knowledge of
k. Generally, functions D and E are publicly known,
and the security of encryption rests in the key. We
also use a collision free one-way function f: M — C
such that given m € M, it is easy to compute f(m),
but given ¢ € C, it is computationally infeasible to find
an m such that ¢ = f(m). Several symmetric encryp-
tion algorithms and candidate one-way functions are
mentioned in [16]. AES is a good choice for symmetric
primitives E and D. Functions that behave like f can
be constructed from these, or public-key encryption
techniques can be used.

Restricting Access to Relational Tables Sup-
pose Alice has a binary relation T'[A, B]. She wants to
publish T, but also wants to restrict access so that a
user needs to present an A value before being allowed
to retrieve corresponding B values. In other words,
she wants to allow T' to be used only in the context
04=4(T), for some constant a. We denote this access
control rule, r, as T : (A — B). The solution to this
problem is described in [10], expanding on a method
first proposed by Needham (see [8]). Using the encryp-
tion primitives described above, the access controlled
table (with respect to rule 7) is 7,2, defined as:

T ={(f(a),Ea(b) ) | (a,b) € T}

Alice publishes T)%¢ (along with f and D) instead of
T. The tuples of T)*¢ consist only of cipher text. Any
subject can use T}*¢ in order to access T' in the intended
manner. For example, consider the following datalog
query over table T':

Qi(z) :— T(“abc”,x)

This query accesses the data in the way it was in-
tended, and it can be rewritten for T)*¢ as the following
rule in datalog extended with encryption primitives:

Qi(z) :— Tr°(f(“abc”),v),x = Degper (v)

The re-written query computes f(“abc”), retrieves all
corresponding B values v from T7}%¢, and then decrypts
them using “abc” as the key. For a more complex

example, consider ()2 below and its re-writing Q%:

Q2(z) :— T(“abc”,y),T(y,2),T(z,x)

Qz(z) :— Tr°(f(“abc”),v),y = Dugper (v),
Tr(f(y), u), 2 = Dy(u),
T(f(2),w),z = D;(w)

@- still accesses the data in the way it was intended:
the user first evaluates T'(“abc”, y), to get a set of val-
ues for y, then uses each of them as a constant to



evaluate T'(y, z), then uses each resulting z to evalu-
ate T'(z,z). The rewritten query Q% shows that it is
possible to express Q)2 on T)2¢, by a judicious sequence
of applications of f and D.

On the other hand it is difficult for an adversary,
Mallory, to use 7)2° in order to execute on 7" queries
that use different access patterns. For example the fol-
lowing queries are hard to compute without knowing
values for z:

Qs(z,y) :— T(z,9)
Qa(z) :— T(z,“abc”)

There are two known attacks to this scheme: the
dictionary attack, and the guessing attack. The first
applies when Mallory can generate the entire mes-
sage space of f which is determined by the domain
of attribute A. For instance, when A represents credit
card accounts, then Mallory can enumerate all account
numbers on a powerful computer and invert f by brute
force. The usual protection against this attack is to
increase the size of the message space: take A to be
the account number and the expiration date. The sec-
ond attack is the guessing attack: Mallory can simply
probe random account numbers and dates, and dis-
cover z-values with some probability. We discuss the
security of encryption further in Section 6.

3 Conditional Access Rules

Next we describe a flexible language of rules defining
conditional access to an XML document, hence condi-
tional access rules (CARs). For a path expression P,
and an XML tree instance D, we denote by eval(P, D)
the node set resulting from evaluating P starting from
the root. A CAR r has the following form:

=C:({B} - {F})

Here C is a single XPath expression specifying a con-
text, B and F are sets of XPath expression defining,
respectively, a set of required bindings, and a set of
retrieved, or free values. C is an absolute XPath ex-
pression (i.e. it starts from the document root); the
expressions in B and F are relative, starting from a
context node ¢ € eval(C,D). Users specify several
rules to control access to an XML document.

The intuition behind a rule is that the subtree
rooted at a context node ¢ € eval(C, D) will be hid-
den from the user: access is allowed only by specifying
values for B (a tuple of values), in which case corre-
sponding subtree(s) F will be accessible. All XPath
expressions in B are required to return atomic values,
i.e. they have to end in text() or data() or in an
attribute, and we assume the set {B} to be ordered.
Figure 1 illustrates the effect of a CAR.

Figure 1: Illustration of the effect of a CAR. Within
context node ¢, if bound value b is provided, then the
subtree rooted at free value f is accessible, except for
an inner context ¢’ that may be specified by another
rule.

Semantics Let R be a set of conditional access
rules, and let D be an XML document tree. We de-
note with x < y the fact that node y is a descendant-
or-self of node z. In a related manner we define the
“allowed” descendants to be those descendants that
are not beneath any other contained context node of
another rule:

allowed-desc(z) = {z | z < z,~(3r € R,
r=c'(B'"—> F'),y € eval(c',D),z <y S x)}

The semantics for CARs defines a function accessp, :
P(Dom) — P(Dom U nodes(D)), where P(S) de-
notes the set of finite subsets of S, with the follow-
ing meaning: if the user provides values wy,..., v,
then the user is allowed to see node or value z if
x € accessgp({vi,...,vr}). Given z € nodes(D)
we denote the value of z with wal(z), and given
V € Dom U nodes(D) we denote Val(V) = {v |
v €V NDom} U {val(z) | € VNnodes(D)}. Then
access is defined as follows:

access'? )(V) = V U allowed-desc¢(Dyroot)
access(-"Jrl)(V) = access(- (V) U
{z | z € allowed-desc(z ),
S e'val(c[Bl =V1,-- .,Bk = Uk]/fj,D),
c:({B1,...,By} > {...F;...}) €R,
Viy.on, U € Val(accessf ( )) }
U access V)

n>0

accessp(V

The function access( )(V) computes the nodes that
the user can obtain after n probes to the encrypted
data: to compute some node z in access("+ )(V) the



user starts by picking some values vy, . .., v already in
access%l) (recall that we blur the distinction between
leaf nodes and their values), uses them to bind the
expressions By, ..., By in the context, then picks some
node z in the result of some Fj: the node z is any
descendant of z, except if it is hidden from the user
because some other context ¢ disallows access to it.
Notice that accessg-g) already includes all nodes in the
document that are not explicitly hidden by a context.

We now provide a number of examples, based on the
data pictured in Figure 2, to illustrate the flexibility
of conditional access rules:

Example 3.1 Consider the set of CARs R containing
rules:

/hospital [ patientrecords/patient :
({patientid} — {pers/name, pers/address})
/hospital [ patientrecords/patient :

({personal /name} — {med/room,med/ floor})

The first rule says that within each patient context,
name and address are accessible conditioned on knowl-
edge of the corresponding patient-id. The second rule
says that within each patient context, the room and
floor are accessible conditioned on knowledge of the
corresponding patient name. If patient-id is a key for
name, and name is a key for the medical fields, then
together these rules imply that a patientid is sufficient
to access name, address, room, and floor. All data not
within a patient context is accessible.

Example 3.2 Suppose the set of CARs R contains
just the rule / : ({} — {.}). Here C = /, 50 Dypot
is the only context node for this set of CARs. B is
the empty-set, which requires no knowledge for access
to F' = self evaluated from the context, which is
Dyoor- accessp({}) contains all descendants of Dot
since there are no other contexts to consider. Thus
this rule makes the entire document accessible with
no conditions.

Example 3.3 Consider the set of CARs R containing
rules:

[ {F=AD)
[hospital [ patientrecords/patient
({patientid, medical /diagnosis} — {.})

{={b

These rules make the entire XML file accessible except
(1) access to patient data is conditioned on knowing a
patient’s id and diagnosis, and (2) no access is given
to any passwords. The last rule makes every password

//password

element a context, within which the set of free values

is empty, thus protecting all passwords, regardless of
other CARs in R.

Example 3.4 Consider the set of CARs R containing
the single rule:

/hospital ( staff [physicians/physician/
{name, password, physid = $PID} —
{patrecords/patientmed/physid = $PID]} )

This example shows how conventional password-
authenticated access can be expressed using CARs
when a password, private key, or other identifying in-
formation is included in the data. When such private
information occurs in the data as bound values, it will
be protected since it is within the encrypted context.
The rule says that given a physician name, password,
and id, the entire patient element is accessible for pa-
tients under the physician’s care. (The $PID notation
is a shorthand requiring matching physician id’s in the
bound and free parts of the rule.)

4 Encrypting XML

Given an XML document D and a set R of conditional
access rules, we generate an encrypted document D%’
that enforces access according to R. Our strategy is
to apply table encryption, as described in Section 2,
to binary tables that are implied by each CAR within
a context. f r=C: (B — F)isa CARin R, and =
is a context node in eval(C, D), then let T}.(z) be the
binary table which pairs the concatenation of bound
data values with the concatenation of free data values.
That is, T,.(z) is defined by:

{0, f)|b="b1.bz...bk, f=f1.fo...[1,
b; € eval(C/B;,D),i € [1..k],
fi € eval(C/F;,D),j € [1..0] }

To construct DY we begin with D. Nodes that are
not a context for any rule appear unchanged in D%.
But for other nodes we consider each rule r for which
x is a context, compute T.(z) and replace z and its
subtree with the collection of tables T,.(z) for each
r € R. The tables are represented as XML in a stan-
dard way as a list of row elements each containing two
column elements (since the T,.(z) are binary). These
replaced elements also need to contain some metadata
describing the paths to the encoded bound and free
values. A similar construction can be recursively ap-
plied to nested contexts; we omit the details from this
abstract.

Admittedly, this is a rather naive encryption
scheme. The resulting D%’ may be large compared



hospital

e

patient id

patient records

(e ) (Cooan )

personal ] [ medical ] A

billing j

insurer ] name j admit date ]
copay ] address j phys id J
balance ] date ofbirth] diagnosis ]

Figure 2: Tree view of XML data describing hospital staff and patients (data values omitted).

with D, and grows with the number of conditional ac-
cess rules in R. Furthermore, there is an opportunity
for optimizing the set of CARs to produce smaller en-
crypted instances. Given a set of CARs R, we would
like to find an equivalent? set R' that is minimal.

Surprisingly, we can use the theory of functional
dependencies to aid minimization of a set of access
rules, at least in the case of relational data. For ex-
ample, given a ternary table T[A, B,C] with the set
of relational access rules (as in Section 2) T : (A —
B),T : (B — C),T : (A — C) the naive encrypted
version will represent consist of three binary relations,
encoding T 45(R),Upc(R),Mac(R). The first two re-
lations, however, are sufficient. This happens because
the given set of access rules is equivalent to the follow-
ing: T: (A — B),T: (B — (). For aset of relational
access rules S, denote §/¢ the functional dependencies
obtained from interpreting — as being a functional de-
pendency rather than access control. For a relational
schema, T' : A — B has the standard meaning: A
functionally determines B in T'.

Theorem 4.1 Two sets of relational access rules
S1, 52 are equivalent iff S{d is equivalent to S{d.

For XML, we can interpret a CAR C : (B — F) as
a functional dependency according to the definition
given in [3]. However, the above theorem does not
hold for XML documents. We leave the interesting
connection between functional dependencies and con-
ditional access rules, along with the general CAR min-
imization problem, as a compelling direction for future
work.

2Two CAR sets R, R are equivalent if for any XML docu-
ment D, accessgr, (D) = accessgr, (D).

5 Query Processing of En-

crypted XML

Since an encrypted, access-controlled document D®¢
may contain large portions of the original document
unencrypted, it makes sense to use existing tools and
technologies to query D*¢. We consider XQuery[4] a
suitable general-purpose query language. For a query
g and an XML document D we denote by g(D) the an-
swer of ¢ evaluated on D. The query rewriting prob-
lem is to find a new query ¢’ such that g(D) = ¢'(D*°).
The new query ¢’ will consist of XQuery syntax aug-
mented with operators for the one-way function f and
the decryption function D needed to process the data.
In particular, the parts of the query that attempt to
access protected contexts need to be replaced with
routines that extract data from the encrypted tables
represented as XML beneath the context. These rou-
tines are closely related to the rewriting examples pro-
vided in Section 2. A full treatment of the re-writing
problem is omitted from this abstract.

6 Security

As we mentioned in Section 2, there are two explicit
attacks on table encryption (dictionary and guess-
ing), and these vulnerabilities are inherited by our en-
crypted instances. Both attacks depend on the size
of the message space, determined by the product of
the domain sizes of the bound attributes in a CAR.
The main protection against a guessing attack is to
decrease the probability of success by increasing the
domain. It is worth noting that a secure server al-
lowing similar access is also vulnerable to a guessing
attack, however this can be dealt with by monitor-



ing queries and delaying the response between unsuc-
cessful probes. In a similar manner, the computation
speed of the one-way function will slow down probes
to the encrypted instance but will also impede query
processing.

In addition, the access controlled relational table
T°¢ leaks information about 7" in a subtle way. From
T°¢ the subject can compute the number of tuples in
T, and the number of distinct values in column A. The
latter form of information leakage can be avoided by
using an improved table encryption scheme omitted
for ease of exposition.

7 Related Work

There are a number of recently proposed access con-
trol models for XML. In [6, 7, 11] XPath expressions
identify fine-grained authorization objects and a server
negotiates access and delivers a pruned document. A
similar framework is proposed in [2] and then extended
to offer remote enforcement by encrypting elements
and transferring encrypted keys to users. Our work
generalizes this by making access conditioned on en-
crypted keys, or on other knowledge of the data. The
authors of [13] describe a model where provisional ac-
cess policies can be defined. Such a policy grants a
subject access to data provided a further action or
qualification is satisfied (e.g., a subject’s activity may
be logged, or a password is provided). These provi-
sions are related to our notion of conditional access
control although they work within the framework of a
trusted security processor. A framework for element-
level encryption of XML documents has been proposed
by the W3C [9]. The IBM Security Suite[l] imple-
ments the W3C XML encryption recommendation.

8 Conclusions and Future Work

We have proposed techniques for enforcing access con-
trol without relying on a secure server, with many
practical applications. Removing the server from
access control enables offline query data processing,
anonymous evaluation of sensitive queries, and new
data sharing possibilities. In addition, remotely con-
trolled access can still be useful in a setting where
data is served to clients because server contractors
may themselves be untrusted. Further, we hope our
conditional access rules would make it easy for indi-
viduals to publish sensitive data in the absence of so-
phisticated security systems. We have identified the
following key problems that require further attention:
(1) minimizing a set of conditional access rules to im-
prove the efficiency of encryption and aid users in pol-
icy definition; (2) re-writing queries over encrypted in-
stances; and (3) quantifying the security of encrypted

instances in terms of the attribute domains and prop-
erties of the encryption primitives.
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