Query Caching and Optimization in Distributed Mediator Systems

S. Adah, K.S Candn, Y. Papakonstantin, V.S Sbråmaian

Abstract

Query processing and optimization in mediator systems that access distributed non-proprietary sources pose many novel problems. Cost-based query optimization is hard because the mediator does not have access to source statistics information and furthermore it may not be easy to model the source's performance. At the same time, querying remote sources may be very expensive because of high connection overhead, high computation time, financial charges, and temporary unavailability. We propose a cost-based optimization technique that caches statistics of actual calls to the sources and consequently estimates the cost of possible execution plans based on the statistics cache. We investigate issues pertaining to the design of the statistics cache and experimentally analyze various tradeoffs. We also present a query result caching mechanism that allows us to effectively use results of prior queries when the source is not readily available. We employ the novel invariants mechanism which shows how semantic information about data sources may be used to discover cached query results of interest.

1 Introduction

During the past few decades, the world has witnessed a spectacular explosion in the quantity of data available in one electronic form or another. This vast quantity of data has been gathered, organized, and stored by a small army of individuals, working for different organizations on varied problems in ways that were best suited to accomplish the task in question. Wiederhold [27] proposed the concept of a mediator as a way of formulating the semantic information necessary to integrate information from these heterogeneous sources and make sense out of a collection of potentially incomplete, inconsistent information system and inherently incompatible programs. Intuitively, a mediator is a program that accesses and integrates multiple databases and/or software packages. In particular, the use of a mediator system sends queries to the mediator, which in turn passes along appropriate subqueries to different software packages and/or databases in the mediated system. The HERMIS project (short for Heterogeneous Reasoning and M__ediator System) at the University of Maryland [26, 25, 18] and the ISMIS project at Stanford University [39] provide a uniform framework for handling different types of heterogeneity that exist between programs and databases.

In this paper we focus on issues related to query processing and optimization in mediator systems that access distributed non-proprietary information resources. In this paper, we make the following contributions:

1. Intelligent Caches: We show how a mediator may maintain "local" caches consisting of the results of previous calls to external software packages (local or remote). Furthermore, we introduce the notion of
an invariant that provides “knowledge” about how to use a cache. In particular, invariants may be often used to process calls to external packages even if these calls were not previously stored explicitly in the cache.

2. Query Optimization We show how given any query \(Q \) to a mediated system \(M \), we can rewrite both the query and the mediator to a new query \(Q' \) and a new mediator \(M' \) respectively such that the answers to query \(Q \) wrt. mediated system \(M \) coincides with the answers to query \(Q' \) wrt. \(M' \).

3. \(Q' \) and \(M' \) make appropriate usage of
 - the cache and invariants,
 - existing well-known query rewriting techniques (e.g., pushing selections down join reordering, etc.)

In general, given a query and a mediator our rewriter constructs a number of viable rewritings of the query and the mediator. Essentially, the rewritings are possible execution plans and the optimizer has to choose one of them based on an estimation of their cost.

4. Cost Estimation The fundamental problem in cost estimation in mediated systems is that mediators may access a variety of software packages/databases. Some of these external sources may have well-understood cost estimates for the queries that are sent to them, for example, in relational DBMSs, cost models have well-known characteristics [29, 30, 31]. However, in other cases, cost estimates may be hard to obtain — for example, in several domains that exist within HEMS (face recognition system terrain reasoning system transportation logistics system video retrieval system) it is extremely difficult to develop a reasonable cost model. We have developed a Domain Cost and Statistics Module (DCSM) within which both kinds of domains (ones with good cost-estimation functions, as well as ones without) can be modeled based on actual performance. DCSMs are based on storing statistics on previous calls to data sources, in order to estimate the cost of the calls that will be issued by a plan.

5. Lossless and Lossy Summarization: If the size of the cached statistics becomes too large, we may encounter problems in maintaining them and efficiently accessing them. We show that statistics caches can be readily “compacted” through the use of a special process called summarization. Two kinds of summarizations are introduced — lossless summarizations that reduce the size of a cache without losing any information that was found in the original cache, and lossy summarizations that compress cached statistics, but may lose some information in the process, thus comprising the quality of cost estimation. Our experiments compare the tradeoffs involved in lossy summarizations.

6. Distributed Implementation: The algorithms described in this paper have been implemented in an experimental testbed on top of HEMS. We will report on specific experiments that integrate data on 3-5 machines across the Internet (sites in Mryl and Cornell, Brickell, and Italy). The experiments we report on will deal with the following packages — INGRES, flat files, and a special software package called AVIS for content-based video information (that has no well-understood cost estimation policies). We will report on experiments comparing the use of caching with and without invariants, as well as the use of the HCSM lossy and lossless compression schemes.
In other words, our framework can be used in conjunction with almost any known query optimization paradigm.

In the next section, we will give a short description of the HERMES system and explain how the HERMES system incorporates the processing of external programs and information sources to answer user queries. Then we will present the proposed architecture for the optimizer for our system and explain in detail how different components of the optimizer works. Figure 1 shows the architecture of our query optimization scheme.

2 A short overview of the HERMES system

In our framework, a mediator is a set of rules of the form

\[A \leftarrow B_1 \text{ and } \ldots \text{ and } B_n, D_1 \text{ and } \ldots \text{ and } D_m, E_1 \text{ and } \ldots \text{ and } E_k \]

where:

- \(A, B_1, \ldots, B_n \) are logical atoms, and
- \(D_1, \ldots, D_m \) are atoms of the form \(\text{in}(X, d, f_1(<\text{args}>) \) where \(d \) is an external package, \(f_1 \) is a predefined function in package \(d \), and \(<\text{args}> \) is a list of arguments. When the external function \(f_1 \) is called with a list of arguments, its output is a set \(^1\) of answers. The predicate \(\text{in}(X, d, f_1(<\text{args}>) \) succeeds if and only if \(X \) is in the set returned by executing \(f_1 \) on the list \(<\text{args}>\) of arguments. Note, the function \(f_1 \) may return complex data structures. Similarly, the arguments to \(f_1 \) may include complex data types as well. In this paper, we will not go into details of how these complex types are handled and implemented.

\(^1\)If an elementary value is obtained, it can be treated as a singleton set.
• The \(E_1 \)'s are of the form \(\text{relop}(V_1, \ y) \) where \(\text{relop} \) is one of \(\{=, \ge, \le, >, \text{ and} \} \) each of \(V_1, \ y \) is either a constant, or is of the form \(\text{attr} \). \(\text{attr} \) where \(\text{attr} \) is a variable that gets instantiated to a complex type whose attributes/fields can be selected using the sequence of attributes shown above.

For example, consider the rule:

\[
\text{routetosupplies(From, Supl, To, R) :- in(Tuple, ingres: select('inventory', item Supl)) \\
\quad \qua
acceptable entries in the cache — intuitively, an invariant specifies certain relationships between different calls. For example, if DC_1 and DC_2 are two different calls, and DC_1's answer is stored in the cache, and the invariants imply that all answers to DC_1 are also answers to DC_2, then we may use the cached answers to DC_1 to provide a partial answer for DC_2 — in such cases, we may avoid the need to execute the domain call DC_2 altogether. We will explain this in detail in the next section. The decision as to when to use CI can be performed both online or offline. We investigate the conditions under which the cache is useful and how to use this information during optimization.

The next module is the **domain statistics module** (DCS for short). It is responsible for providing estimates of calls to external program/sources. For some, we will refer to these program/sources as domains. The module keeps execution time and cardinality statistics in a database and provides cost estimates to the rule cost estimator. DCS may keep very detailed tables of statistics information. Alternatively, it may maintain summarized tables.

DCS is built as an extensible module. Hence, if a domain already provides a cost estimation module, the DCS can be connected to the module for caching statistics for this domain. Hence, the estimates for calls to these domains will be directed to their respective domains.

Finally, the **rule cost estimator** takes the rewritten program from the rule rewriter and computes the cost of each plan by obtaining the cost estimates of individual calls to the sources from DCS and combining the results. The module then decides on the best plan for executing the given query. We will not give the details of rule rewriting and rule cost estimation especially when the program contains recursion due to space restrictions. [33] gives a detailed discussion on this subject.

In this paper we assume that there are two modes of operation for the mediator. The first mode is the **all answers mode** where the mediator calculates all the answers automatically. The second mode is the **interactive mode**, where the mediator calculates a first set of answers and presents them to the user. The mediator then asks the user if he wants to see more answers. If the answer is yes, the next set of answers is evaluated. The user has the choice of requesting all the remaining answers at any time.

4 Invariants and intelligent caching using invariants

We have seen above that domain functions are executed uniformly in the mediator through the use of the \texttt{in()} calls. Most of the time, however, these calls are costly operations. For example, the required domain may be located at a remote site, or the domain may charge an access fee per request, and so on. It is desirable to store the results of previous execution of the costly operations. Caching only prevents making the same call more than once. However, in order to make better use of the caches, we propose to use specialized knowledge called invariants.

Invariants are expressions that show possible substitutions for a domain call. Suppose we have a spatial index and we can perform range queries on this index. The function \texttt{range} returns all the points at a given distance to a given point. Suppose we know that all the points in file “points” lie within a 100x100 square. Then we can
write the following invariant:

\[\text{Dist} > 142 \Rightarrow \text{spatial:range}(\text{'map'}, X, Y, \text{Dist}) = \text{spatial:range}(\text{'points'}, X, Y, 142). \]

This says that given a very big range query, we can shrink it to the smallest admissible range query, i.e., a range of 142. The equality in this invariant indicates that the answer set returned by one of the domain calls is identical to the other's. This invariant uses semantic information specific to a certain domain. Suppose we write a more general invariant for a specific relational database (let's call it relation) which supports a function called select given a table name, attribute name and value, selects all the tuples from the given table where the given attribute stores something less than the given value.

\[V_1 \leq V_2 \Rightarrow \text{relation: select < (Table, Attr, V2)} \sqsubseteq \text{relation: select < (Table, Attr, V1)} \]

This invariant says that given a call to select <, we can replace it by another call to select < with a smaller value. The relation between these two calls is not that of equality as in the previous example. Instead, it states that all the answers returned by relation:select<(File, Attr, V1) will also be returned by relation:select<(File, Attr, V2). Hence, invariants are viewed as sound, but not necessarily complete rewrite rules. In our system, Invariants are intended to enhance the intelligent use of caches when processing a domain call. The query processor is expected to first check the cache to see if the answer for a domain call is already stored in it. Then, it will use the invariants to substitute domain calls and check if these calls are in the cache. If the invariants indicate that there is a domain call in the cache that provides a partial list of answers, then the actual domain call may need to be performed eventually. Even in this case, we expect to get a first set of answers quickly using the fast cache and invariant processing. In some cases, the user may not want the rest of the answers to his/her query and the actual domain calls may not need to be executed at all.

Formally, an invariant is an expression of the form

\[\text{Condition} \Rightarrow \text{DomainCall}_1 \sqsubseteq \text{DomainCall}_2 \]

where \(\sqsubseteq \) is one of \(= \), \(\supseteq \) and \(\sqsubseteq \). \text{DomainCall}_1 and \text{DomainCall}_2 are two domain calls and \text{Condition} is a conjunction of atoms in the underlying language. We will assume that the invariants only use simple conditions such as comparisons and also that there are no free variables in the invariants, i.e., all the variables in \text{Condition} appear either in \text{DomainCall}_1 or in \text{DomainCall}_2.

A cache consists of a list of ground domain calls of the form domain: function(arg1, ..., argN) and the answer sets associated with each domain call. Hence, we may view the cache as a collection of pairs of the form (domain call, answer set). The domain call in this pair is used as the unique index to the answer set.

4.1 Query processing with caching and invariants

In this section, we specify how domain calls are handled in the presence of caches and invariants. For this purpose, we are going to define a special program called “Cache and Invariant Manager” (CIM, for short.) During run-time (i.e., when we execute the plan) the CIM behaves like any other domain. Thus, no special operators are needed from the HBMS execution engine in order to retrieve data from the cache.

Suppose we execute the domain call domain: function(arg1, ..., argN) in CIM. Then, the following operations take place in CIM:
• First CIM tries to match this call with one of the calls already in the cache. In this case, all the answers associated with the cached call are returned to the mediator and the cached entry replaces the actual domain call.

• In case there is no such entry in the cache, then CIM consults the invariants. Suppose the following is an invariant in CIM.

\[\text{Condition} \Rightarrow \text{DomainCall}_1 = \text{DomainCall}_2. \]

and there exists a substitution \(\theta \) where \(\text{DomainCall}_1 \theta = \text{domain: function}(\text{arg}_1, \ldots, \text{arg}\text{Edition}_0) \) is true and \(\text{DomainCall}_2 \theta \) is in the cache. In this case, the answer set for \(\text{DomainCall}_2 \theta \) is passed on to the mediator and this set replaces the actual domain call.

• Finally, suppose both of the above two conditions are not satisfied, but CIM contains the following invariant,

\[\text{Condition} \Rightarrow \text{DomainCall}_1 \sqsubseteq \text{DomainCall}_2. \]

and that there exists a substitution \(\theta \) where \(\text{DomainCall}_1 \theta = \text{domain: function}(\text{arg}_1, \ldots, \text{arg}\text{Edition}_0) \) is true and there exists an entry \(\text{DomainCall}_2 \theta \) in the cache. In this case, the answer set for \(\text{DomainCall}_2 \theta \) is passed onto the mediator to provide a set of the actual answer set for \(\text{domain: function}(\text{arg}_1, \ldots, \text{arg}\text{Edition}_0) \). If these answers are not sufficient, CIM must invoke the actual domain call.

Note that several decisions need to be taken when invoking the CIM module. For example, it is possible to make the actual domain call in parallel whenever a partial answer set is obtained. In this case, CIM is used to quicken the response time for the first set of answers. In the interactive mode, the partial set of answers may prove to be sufficient and the actual call may not need to be made. This may be accomplished since the query processor stops the execution of all the running external programs when they are no longer needed. The advantage of having a separate cache and invariant manager is that it is possible to build special purpose caches for different domains, hence making the overall system very flexible.

The query processor for the mediator does not need to know of the existence of the caches and the invariants. All their processing is done in the CIM module. We only need to direct the relevant calls to this module instead of actual domain. Suppose we build a simple decoding system in CI where a call to CIM of the form CIM: domain\&function is translated into a call to function in domain. Then, we can simply replace all the occurrences of this function call in the mediator with CIM: domain\&function. The decision to send all calls for a certain domain or some specific function calls can be made prior to query execution. In this case, the mediator is edited as described above for those calls (and domains). As for the other calls, there is a decision that can be made whether to use CIM or not. Even though the runtime query processor does not know of CIM the rule rewriter and the rule cost estimator can be made aware of it. In this case, one of the rewriting choices is then whether to make the actual call or a call to CIM instead.
5 Rule Rewriter

The rule rewriter (see Figure 1) transforms the rules of the program \(P \), that contains the query and the
predicate specification, into equivalent programs, that will reflect plans, by applying one of the following transformations:

1. Replace a subgoal \(G \) with a call to the cache and invariant manager.
2. Push selections to the source.
3. Rearrange the order of the subgoals of the rule, as long as it is compatible with the permissible almonds of every domain call.

Note that the rule rewriter processes only the rules that will be used for answering the query. Let us illustrate the rule rewriter’s workings with the following example.

Example 5.1 Consider the following module \(M \).

\[
(\text{M}) \exists \text{m}(A, C) : \text{p}(A, B), \text{q}(B, C).
\]

\[
(\text{R1}) \text{p}(A, B) : \text{in}(\text{Ans}, d1: p.ff()), =(\text{Ans}, 1, A), =(\text{Ans}, 2, B).
\]

\[
(\text{R2}) \text{p}(A, B) : \text{in}(A, d1: p.fb(B)).
\]

\[
(\text{R3}) \text{q}(B, C) : \text{in}(\text{Ans}, d2: q.ff()), =(\text{Ans}, 1, B), =(\text{Ans}, 2, C).
\]

\[
(\text{R4}) \text{q}(B, C) : \text{in}(C, d2: q.fb(B)).
\]

Let us also consider the query \((Q7)\)

\[
(\text{Q7}) \neg \text{m}(a, C)
\]

The query rewriter first adorns the predicates in a way that indicates the incoming and outgoing arguments of every predicate. The former are annotated with a B, that stands for “bound”, and the latter with F, that stands for “free”. Then, the subgoals of a rule are re-ordered in all possible ways, provided that there is a corresponding adornment. In our example, the query rewriter develops two programs that can compute the query. The first one, \((R8)\) assumes that first we obtain all B bindings from domain \(d1 \) and then we pass B bindings to \(d2 \) and obtain corresponding C bindings. Note, the rewriter pushes the condition \(A = a \) to the source. Consequently, it projects out the attribute \(A \) of the p predicate. To avoid confusion, we replace p with $p^{a, B}$ where a is a reminder that we have projected the A attribute that we always be equal to a. In general, our query rewriter performs all the traditional algebraic optimizations (push selections and projections down) but we will not further deal with sets this of optimizations in this paper. ([33] provides an extensive list of algebraic optimizations that can be applied.)

\[
(\text{R9}) \exists A^{B}(a, C) : p^{a, B}(B, C).
\]

\[
(\text{R10}) p^{a, B}(B) : \neg \text{in} B, d1: p^{a}(a)).
\]

\[
(\text{R11}) q^{a, B}(B, C) : \neg \text{in} C, d2: q^{a}(B)).
\]

The second plan, \((\text{R2})\), assumes that we first obtain B and C bindings from $d2$ and then we pass B bindings to $d1$.

8
(H2) (H3) \(\text{split}(a, c \land \text{split}(B, C), \text{split}(B)). \)

(H4) \(\text{select}(\text{split}(B), \text{select}(X, \text{split}(a, B))). \)

(H5) \(\text{select}(\text{split}(B, C), \text{select}(B, C, \text{split}(B))). \)

Assuming that the rule writer derives more than one plan for a query (something expected in all but the most trivial examples) we have to estimate the cost of each plan and select the best. This is the task of the DCSM module, which is presented in the next section.

6 Domain Cost and Statistics Module (DCSM)

As discussed in the introduction, heterogeneous systems necessitate the development of different cost estimation strategies. In optimization of relational queries, typically we have extensive statistics about the relations (e.g., selectivity/selectivities, cardinalities, and so on) and we also understand the behavior of the basic operators (select, project, ...). Hence, cost estimators can be customized for the specific domain. This is not however a reasonable assumption for a general purpose cost estimator of a heterogeneous system. A system like HERMIS may integrate arbitrary domains whose internals we will not know in general. Furthermore, the domains may be non-proprietary and hence we may not be able to access statistics information even if it exists. Sometimes, even the developers of these systems may not know the appropriate cost functions. In addition, the access to a domain at a remote site may vary greatly from time to time because of network delays.

Recall that the mediator in the HERMIS system only knows a set of functions for any given domain. Each domain provides its input/output types and the use of these functions. The mediator may not know the function that best characterizes the time it takes to evaluate the calls. Hence using curve fitting techniques [34] to approximate the costs may not be practical since we do not know the shape of the function. Also, cost functions do not easily adapt to abrupt and unexpected changes in the costs of domain calls. Finally, keeping different cost functions for the different cost parameters such as time and cardinality, for different calling patterns, i.e., where some arguments are set to known constants, where the others are only known to be bound and even maintaining these functions wastes a lot of offline CPU time. In this system we provide a general cost estimating technique that can adapt to the behavior of the underlying system easily. We now explain the DCSM module in greater detail.

The DCSM module provides cost estimates for domain calls. In particular, it provides the single function called \(\text{domain_function}(\text{Arg1}, \ldots, \text{ArgN}) \) where \(\text{ArgI} \) is either a constant or the special symbol \(\text{bound} \) which stands for bound. Whenever \(\text{bound} \) appears at position \(I \) of a domain call pattern, it means that we know \(\text{ArgI} \) is bound but its exact value is not available. For example, the call \(\text{DCSM} _\text{cost}(\text{d_f}(5, \text{bound})) \) is asking the DCSM module for cost estimates of a domain call \(\text{d_f} \) where the first argument is \(5 \) and the second argument is some constant that we do not know yet. Recall that we assume all domain calls are ground before they are executed, hence there cannot be a free variable in a domain call pattern.

Similarly, we define \(\text{predicate_patterns} \). Redicate patterns may contain the symbol \(\text{free} \) to indicate that a corresponding variable may be free when this predicate is evaluated. For example, a predicate pattern of the form
A cost estimate (associated with a domain call pattern or a predicate pattern) is a cost vector of the form

\[\langle T_\text{a}, T_\text{f}, \text{Card} \rangle \]

where \(T_\text{a} \) is the (estimated) time to find all answers, \(T_\text{f} \) is the (estimated) time required to retrieve the first answer, and \(\text{Card} \) is the (estimated) cardinality of the answer set. It is possible that a specific cost estimator is available for some domain but this estimator does not provide some of the parameters mentioned above. Then the missing parameters still can be provided by the RDSModule while getting the others from the better estimator easily. From now on, we will restrict our attention to domains with no cost estimation capabilities. We now start describing the basic components of the RDS module.

6.1 Cost vector database

This database records cost information about domain calls as they get executed by the mediator. In the simplest version, for each domain call, it contains a triple of the form \((\text{domain call, cost vector, record time})\), where \text{record time} is the actual time (together with the day) the call was recorded in the database. For simplicity, we will ignore the \text{record time} information for now. Hence, the cost vector database consists of tables for different domain calls, where the columns correspond to the time to compute the first answer, time to compute all the answers, the cardinality of the answer and the arguments to which this value corresponds. Some of this information may not be available for some domain calls since all answers may not have been obtained (e.g. pruning may have been applied or the mediator may have been working in interactive mode and the user stopped the query execution). We now give some example tables that will be used throughout the rest of the paper to illustrate the working of the RDSModule.

Example 6.1 Let us reconsider the mediator (M), the query (Q7) and the two candidate plans (P8) and (P12).

In order to estimate the cost of the two plans we have to estimate the cost of the domain calls\(\text{d1:p, bf, d1:p, d1:p, d2:q, d2:q, d2:q} \).

\(\text{bf and d2:q, ff that appear in the two plans. Let us assume that the tables (T16), (T17), (T18) and (T19) of Figure 2 describe the total execution time and the cardinalities of \(d1:p, bf, d1:p, d2:q, \text{bf and d2:q, ff} \) calls that have been issued in the past. Note, the same value for an argument may appear more than once in the tables corresponding to different calls. Note also that for presentation simplicity we include only the attributes \text{Card} and \(T_\text{a} \) while in general we also have the response time to first answer and the time when the call was issued.}

Now we may estimate the cost of a domain call, e.g., \(d1:p, bf(a) \), for the execution time to all the answers, by taking the average of the two entries in the table (T16) of Figure 2, namely 2.00 and 2.20 to get 2.10. We may also estimate the cost of a domain call where we do not know one or more of the parameters. For example, consider the call \(d1:p, bf($b) \). We can estimate its cost by taking the average, i.e. \((2.00+2.70+2.80+2.84)/4\).

6.2 Summary Tables

Though the tables of Figure 2 have the necessary information, there are three important problems regarding their use and maintenance:
- **fully detailed statistics function** Keeping the full statistics data of all the calls puts a heavy burden on storage.

- **expensive aggregation function** We repeatedly apply computationally expensive aggregation functions — in our examples, the average function. Thus, the time required for calculating the cost may be prohibitively long.

In the following subsections, we will show how we solve the above problem using offline summaries of the statistics information stored in the cost vector database.

6.2.1 Loss-less Summarization

As we have seen above, the cost vector database contains very detailed statistics that make it very hard for the BCSM module to analyze and maintain relevant cost information for domain calls. In many cases, we may summarize the statistics tables without losing any information that may be useful during cost estimation, i.e., any statistics question posed by the cost estimator will have the same answer on the summarized table and the original table. We call these summaries loss-less. For example, the summarization of the table (II6) of figure 2 with the table (II9) of figure 3 and the corresponding summarization of the table (II9) of figure 2 with the table (II10) of figure 3 are loss-less. In effect, the tuples with \(A = 'a' \) (or \(A = 'c' \)) have been aggregated into a single tuple. The 1 attributes indicate the number of original table tuples that correspond to the summarized table tuples.

The example suggests a rather straightforward summarization procedure:

1. Split the attributes of every statistics table into a set of dimensions that consist of all attributes of the corresponding call, and the set of metrics that reflects the response time of the call, and the cardinality of the result. (Note that in general we may have more metrics attributes than response time...
and cardinality. In our running example, the set of dimensions of table (T16) is \{A\} and the set of metrics is \{\text{Card}, \text{A}\}.

2. For all tuples that have identical values \(d_1, \ldots, d\) on the dimension attributes, aggregate the metrics attributes into a single pair of average response time \(T_{\bar{a}}\) and average cardinality \(\text{Card}\) and create a single tuple \((d_1, \ldots, d, \text{Card}, T_{\bar{a}})\) where \(\bar{a}\) is the number of original table tuples that have been aggregated into the specific tuple.

6.2.2 Key Summaries

The summarization described allows us to avoid the expensive average aggregation only when all the arguments of a domain are set to constants. Even however, some constant is known to be bound but its specific value is not known, we still need aggregation. Suppose for example, we want to estimate the time it will take to execute the call \(d_1: \text{p.bf}(\lambda b)\) based on table (T20) in Figure 3. Then, again the most general conclusion we can draw is the average of all the tuples for this table. In fact, we can derive such a table and put it in our summary tables. Let us motivate this idea by the following example.

Example 6.2 Recall the mediator given in example 6.1. The tables (T17) and (T18) of Figure 2 contain in their dimensions set the attribute \(B\), i.e., they provide the expected response times and cardinalities for specific values of the \(B\) attribute. However, if we assume that the predicates \(p\) and \(q\) of example 6.1 are “hidden” from the user, then it is impossible that the cost estimator will ever ask the response time for a specific \(B\) value. The reason is that we cannot know the specific \(B\) values until we start executing the program and obviously by that time it will be too late to undo our decisions. Thus, we can remove the \(B\) attribute from the dimensions set and derive the summarized tables of Figure 4.

The intuition that allowed us to remove \(B\) from the dimensions set can be implemented by a procedure that inspects the given mediator program and decides which attributes may ever be instantiated to a specific constant during the rewriting phase. All attributes that can never be instantiated to a specific constant are dropped...
from the dimensions sets. Similarly, we can watch for the access patterns for the tables and decide which tables are needed very frequently and decide to create these tables. Alternatively, drop the tables that are not accessed very often.

Summarization has a dual purpose; first, it reduces the storage space needed for statistics. Second, it provides fast responses to the questions of the cost estimator. We have the option of maintaining either summary tables and providing for rough and out-of-date estimates but saving time and space, or using the cost vector database for all purposes which is very time and space consuming. In Section 8 we give the experimental results for the utility of the RDSM module. We note here that, it is possible to perform the summaries in a more biased fashion, especially for the remote domain calls by observing the load of the network, by giving precedence to more recent statistics. Currently we are exploring these possibilities.

6.3 Cost Estimation using Cost Vector Database and Summary Tables

Now given a domain call to the RDSM module, we describe how we can make use of the cost vector database and the summary tables to estimate the cost of the given call. At any given time we may have a couple of different tables for a domain call d: f. Having these tables does not guarantee that we can estimate the cost of the given call pattern without any calculations. The following example illustrates this point.

Example 6.3 Suppose we have a three place domain call d: f(A, B, C). For this domain call we have three tables; namely d: f(A, B, C), d: f(B, B, C), d: f(B, B, B, C) and d: f($b, $b, $b). Now we want to estimate the cost of the call d: f(a, $b, 2) by a simple table lookup. (Note that the table d: f($b, B, C) means that the variables B and C are set to known constants where the first argument is only known to be bound. Similarly, d: f(A, B, C) means that all the arguments are set to known constants.)

Obviously, the table d: f(A, B, C) in the cost vector database cannot be used for this call, since it involves performing aggregate operations. Then, we look if there is a table for d: f(A, $b, C). We see that there is no such table. Next, we relax our call and look if we have table d: f($b, B, C) or d: f(A, $b, $b). We see that we have d: f($b, $b, C), hence we look in the table for the entry d: f($b, $b, 2). Suppose now there is no entry for C=2 in this table. Then, we relax the call one more time and look if we have the table d: f($b, $b, $b) which is the average of all the information for this domain call. Since we have it, we lock up the only tuple and get our estimate.

The complete algorithm for estimating a domain call’s cost in the most lossless way, given a collection of (possibly summarized) tables, is given by the following steps. Let us assume that the call has the form p(c, \ldots, c, \ldots, \ldots, s)

1. Find a table s whose set of dimensions attributes contains the first n columns of p.
2. Find the specific tuple $s(c_1, \ldots, c_n)$ of s. If it is found return it to the cost estimator. If not continue:
3. Nondeterministically replace one of the constants c_1, \ldots, c_n with a $\$b$ and recursively call the algorithm.
7 Rule Cost Estimator

The rule cost estimator associates cost and statistics information with every rule that was output from the rule rewriter starting from the query. The rule cost estimator then makes a function f_{σ}, that, given the cost vectors of the subgoals of a rule, estimates the cost vector of the head.

Example 7.1 Recall the mediator given in example 6.1 and the plans generated for this mediator in example 5.1. Let us assume that the rule of operation is all answers to the query ?- m(a, c) as given in example 6.1. Now we have access to the following pieces of information:

- The expected time to all the answers ($T_\sigma (p^{aSr})$) for computing p^{aSr}, or equivalently $\text{in}(B, d1: pbf(a))$ and the expected cardinality ($\text{Card}(d1: pbf(a))$) of $d1: pbf(a)$ tuples.
- The estimated time $T_\sigma (q^{bSr})$ for q^{bSr}, or equivalently for $\text{in}(C, d2: qbf(B))$.

Now we can estimate the cost of executing (P1) by the following formula, that considers that we first execute $\text{in}(B, d1: pbf(a))$ that takes time $T_\sigma (p^{aSr})$ and then we issue $\text{Card}(d1: pbf(a)) \text{in}(C, d2: qbf(B))$ calls that each one takes $T_\sigma (q^{bSr})$. Thus, the cost is given by formula 1.

$$T_\sigma (p^{aSr}) + (\text{Card}(d1: pbf(a)))(T_\sigma (q^{bSr})).$$

(1)

Similarly, we may estimate the cost of executing (P12) by the formula 2.

$$T_\sigma (d2: qff()) + (\text{Card}(d2: qff()))(T_\sigma (d1: pab(a, B)))$$

(2)

where $T_\sigma (d2: qff())$ is the time needed for executing $\text{in}(\text{Ans}, d2: qff())$, $\text{Card}(d2: qff())$ is the number of Ans tuples that we receive from the $\text{in}(\text{Ans}, d2: qff())$ call, and $T_\sigma (d1: pab(a, B))$ is the time to execute an $\text{in}(\text{Ans}, d1: pab(a, B))$ call.

Consider a query $p(t_1, \ldots, s)$ that involves using a rule R having head $p(s_1, \ldots, s)$. The processing of this query causes certain arguments in the head of R (i.e., certain s_i's) to become bound, while the others are free. Suppose we wish to estimate the cost vector of rule R with respect to this particular call (and hence with respect to the bindings generated by this call). Suppose the body of R (suitably instantiated wrt. this call) is g_1, \ldots, g (in that order). Our estimation procedure uses the following steps:

1. If g is of the form $\text{in}(X, d: f(a_1, \ldots, arg_k))$ then we convert g into a domain call pattern $d: f(a_1, \ldots, g)$ where $a_1 = \text{arg}_i$ if arg_i is a constant and $a_1 = $ otherwise. Then, we invoke the call $\text{DCSM: cost}(d: f(a_1, \ldots, g))$ and obtain the cost vector for this call pattern.

2. If g is an IN predicate then compute the cost vector of g_1 by recursively invoking the described procedure for the rules defining g_1 and then adding up the cardinalities and the execution times of the results produced by each rule.

3. Assuming that
(a) we implement the join of the subgoals using nested loops with left to right order, and

(b) we perform duplicate elimination i.e., for every result we receive from g_{i-1} we issue a call to g_{i+1} regardless of whether we have issued again this call.

we can associate with the body of the rule the cost vector

$$[T_b, \Psi, \text{Card}] = [\sum_i T_{b_i}\text{Card}_{b_i-1}, \sum_i \text{Card}_{b_i}]$$

Assuming that we do no duplicate elimination we can write

$$[T_b, \Psi, \text{Card}] = [\Psi, \text{Card}]$$

8 Implementation and Experimental Results for the Hermes Optimizer

The Hermes system currently integrates 3 relational DBMS (Paradox, Oracle and Ingres), one object-oriented DBM (ObjectStore), multimedia packages (AMOS and AVIS), a US Army path planning package, a face recognition package, as well as flat file data, text databases (in particular a USA Today newswire corpora), and a spatial database. It runs on the Unix/XWindow platforms as well as on the UC/Windows platform and includes over 80,000 lines of C-code. 1000 of these lines relate to the Qt (QP) part of this paper, while the rest relate to a particular query processor QP as described in [18, 3]. The system is currently capable of accessing data distributed at ten selected sites across the Internet (5 in the USA, 4 in Europe, 1 in Australia). In order to determine the performance of the algorithm described here, we ran a number of experiments. For space reasons, we report below only a small set of experimental data that is representative of the totality of the experimental results obtained. All timing values are given in milliseconds and they show the query initialization + wait for response + display the results times.

Exciting Query QIs with Glimpse and/or Invariants: Figure 5 shows a small representative sample of the times obtained when running queries that required accessing data/operations in a video retrieval package called AVIS. AVIS. It is easy to see from these figures that using caches always leads to savings in time when the software/data is located at remote sites. Furthermore, using invariants is useful when the query is not explicitly cached - in such cases both partial invariants and equality invariants lead to significant savings in time over actually making the call. We found partial invariants to be always useful, except the size of the partial answer returned plays a significant role. CMF must keep the answers from the cache in memory and compare them with the answers from the actual call. We also found the overhead of checking the cache and the invariants without success and making the actual call to be negligible in our experiments.

The Utility of DCM: The table in figure 6 shows our results on the utility of the DCM. In particular, we show for a representative set of queries that inter-operate between AVIS and NGHS data located across the network, the times taken to compute the first answer and all answers. In each of these two cases, three times are shown: (1) the actual running time of the query, (2) the running time of the query as predicted by the

\footnote{Note, caching gets around the disadvantages of continuing duplicate elimination and pipelined nested loops.}
<table>
<thead>
<tr>
<th>Query</th>
<th>Type</th>
<th>Time for First As</th>
<th>Time for All As</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find all actors in “The Rope”</td>
<td>no cache</td>
<td>1776</td>
<td>2581</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td>no invar.</td>
<td>48374</td>
<td>49039</td>
<td>sites in Italy</td>
</tr>
<tr>
<td></td>
<td>cache, no invar.</td>
<td>300</td>
<td>1021</td>
<td>both USA Italy sites</td>
</tr>
<tr>
<td></td>
<td>cache + equality inv.</td>
<td>873</td>
<td>1646</td>
<td>both USA Italy sites</td>
</tr>
<tr>
<td></td>
<td>cache + partial inv.</td>
<td>501</td>
<td>2490</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>321</td>
<td>73175</td>
<td>sites in Italy</td>
</tr>
<tr>
<td>result: 6 tuples (421 bytes) (22 bytes from partial inv.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find all frames in “The Rope” in which Phillip appeared.</td>
<td>no cache</td>
<td>1459</td>
<td>2756</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td>no invar.</td>
<td>11023</td>
<td>12158</td>
<td>sites in Italy</td>
</tr>
<tr>
<td></td>
<td>cache, no invar.</td>
<td>351</td>
<td>1405</td>
<td>both USA Italy sites</td>
</tr>
<tr>
<td></td>
<td>cache + equality inv.</td>
<td>1807</td>
<td>2775</td>
<td>both USA Italy sites</td>
</tr>
<tr>
<td></td>
<td>cache + partial inv.</td>
<td>1983</td>
<td>2073</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1941</td>
<td>16553</td>
<td>sites in Italy</td>
</tr>
<tr>
<td>result: 20 tuples (3168 bytes) (421 bytes from partial inv.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find the objects that appear between frames 4 and 47 in “The Rope”</td>
<td>no cache, no invar.</td>
<td>1420</td>
<td>2319</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td>cache only</td>
<td>326</td>
<td>1153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cache + equality inv.</td>
<td>504</td>
<td>1386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cache + partial inv.</td>
<td>578</td>
<td>2989</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td>no cache, no invar.</td>
<td>660</td>
<td>7523</td>
<td>sites in Italy</td>
</tr>
<tr>
<td></td>
<td>cache + partial inv.</td>
<td>430</td>
<td>7795</td>
<td>sites in Italy</td>
</tr>
<tr>
<td>result: 19 tuples (182 bytes) (130 bytes from partial inv.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find the objects that appear between frames 4 and 127 in “The Rope”</td>
<td>no cache, no invar.</td>
<td>1178</td>
<td>2426</td>
<td>sites in USA</td>
</tr>
<tr>
<td></td>
<td>cache only</td>
<td>357</td>
<td>1430</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cache + equality inv.</td>
<td>709</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cache + partial inv.</td>
<td>3926</td>
<td>4941</td>
<td>sites in Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>447</td>
<td>7273</td>
<td>sites in Italy</td>
</tr>
<tr>
<td>result: 24 tuples (247 bytes) (130 bytes from partial inv.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Executing Remote Calls with Caching and/or Invariants

DCSM in Lossless Tables, and (3) the time taken for the query as predicted by the DCSM in Lossy Tables, where the lossy tables are obtained by dropping all the attributes of the cached domain call statistics. In the table below each of queries i and i' are “equivalent” in the sense that query i' is a rewriting of query i. The actual queries are listed in the appendix. The lossy tables are obtained for dropping all the attributes in the cost vector tables of all the domain calls. The cost vector database (lossless) contains about 20 different instantiations for the arguments of a domain call in the corresponding tables.

There are several points to be noted when examining the above tables. First, when we look at the times taken to compute All Answers, the Lossy and the Lossless DCSM predictions closely match the actual running times (though it is certainly not perfect in its predictions, e.g. the case of query #2). The DCSM errs both ways, sometimes over-predicting the time taken and sometimes under-predicting the time taken. Lossy tables do worse mainly as a result of the discrepancy between the expected and the real cardinalities of the outputs.

When looking at the figures for computing the “first” answer, DCSMs predictions are often good yet in some cases, it can vastly under-predict the actual times taken. These are cases when it is hard to predict the amount of “backtracking” that the HERMS system might take in actually processing a derived query. The rule cost estimator calculates the cost of calculating predicates as if the first answer is going to be found by combining the first answers returned for the calls made to compute it. In reality, the amount of time spent on backtracking cannot be neglected as our experiments have shown. One way to remedy this solution can be to cache, especially...
the time for the first answer of predicates in the same way we cache statistics for domain calls.

Our experience, supported by the experimental figures shown above also imply that when Q1 is a rewriting of Q2

1. If we want all answers, and DCSM predicts Q1 is better than Q2, then we have found that Q1 almost always runs much faster than Q2. Furthermore, the predicted values and the real values are quite close to one another.

2. The situation is slightly stranger when first answers are being computed. If DCSM predicts Q1 is better than Q2 by at least a 50% margin then Q1 is usually runs faster than Q2. However, if DCSM predicts Q1 is better than Q2 by a small margin, then the results are unpredictable; in some cases Q1 executes faster, while in others Q2 may do much better.

9 Related Work and Conclusions

There is now a great deal of work in related system techniques. For example, there have been several efforts to integrate multiple relational DBMS [8, 19] and object-oriented DBMS [9, 13, 22, 14, 15]. Our approach in this paper differs from the above approaches in the following ways: first, in most of the above approaches, there are well-developed cost models for evaluating the behavior of queries. In contrast, in our framework, we wish to mediate between arbitrary “non-traditional” databases (including face databases, video repositories, databases of plans for transportation logistics, etc.) where such cost models are not always available. Furthermore, when cost models are available, we would like to take maximal advantage of them well. Second, our notion of an invariant is unique and applies in a uniform way to heterogeneous data “exchanged” during computation of complex queries that apply to multiple data sources. Third, we have presented experimental results that apply not only to heterogeneous databases consisting of “traditional” sources, but also a number of “non-traditional” sources.

Cost-based optimization in mediated systems is a novel problem that is different from traditional distributed query optimization. An extensive discussion of the differences and the need for novel research in the area of optimization in mediated systems appears in [42]. The most important difference is the absence of statistics of non-proprietary sources. [40, 41] find out the performance behavior of a non-proprietary source by probing

<table>
<thead>
<tr>
<th>Query</th>
<th>First Answer</th>
<th>All Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual Time</td>
<td>Lossless w/DSM</td>
</tr>
<tr>
<td>query1</td>
<td>2245</td>
<td>2487</td>
</tr>
<tr>
<td>query1</td>
<td>2354</td>
<td>2487</td>
</tr>
<tr>
<td>query</td>
<td>14054</td>
<td>2688</td>
</tr>
<tr>
<td>query4</td>
<td>3834</td>
<td>2688</td>
</tr>
<tr>
<td>query3</td>
<td>2620</td>
<td>1378</td>
</tr>
<tr>
<td>query4</td>
<td>3187</td>
<td>1335</td>
</tr>
</tbody>
</table>

Figure 6: The Utility of DCSM
it with carefully organized sample queries and applying regression methods for estimating various parameters of a predetermined cost model. Their method is very effective but it is inapplicable when we do not have a predetermined cost model. This is the case with many unconventional sources. For example, it is very difficult to generate a cost model for the face recognition or the video retrieval or terrain reasoning/ path planning sources of HEMS.

Work on caching in databases has been done extensively through the notion of a materialization[1, 2, 6, 7, 10, 11, 19, 21, 23, 24]. These papers show how views (and their materializations) may be defined for different kinds of databases such as relational DBMS, object-oriented DBMS, and object-relational systems. However, it is only recently that materialized views were studied in the context of mediated systems[17]. Consequently, very little work has been done on how to effectively use such materialized mediated views to effectively process queries[31, 32, 37, 38]. A materialized mediated view may be viewed as a domain cache and hence, all the algorithms in this paper deal with how to effectively use such caches to process queries (and optimize them) in a distributed heterogeneous database management system. In addition to this work, there has been work on caching in the deductive database community through the use of OLDB resolution[35, 36]. Our work effectively shows how such caches may be defined when views access non-linear data representations and software packages and furthermore, through the use of invariants, shows how such caches may be effectively used.

Acknowledgements This research was partially supported by the Army Research Office under grant DAAB 04-95-10174, by the Air Force Office of Scientific Research under grant F9623-93-1-0065, by AIAA/Temm Labs contract N. E30002-93-C-0241 (Order N. A716), and by an NSF Young Investigator award IRI-93-57556.

References

Appendix: List of Queries Used in 2nd Experiment

query1(first, Last, Object, Size) :-
 in(Size, video vi deosize('rope')) &
 in(Object, video frames_to_objects('rope', first, Last)).

query2(first, Last, Object, Size) :-
 in(Object, video frames_to_objects('rope', first, Last)) &
 in(Size, video deosize('rope')).

query2(first, Last, Object, frames, Actor) :-
 in(Object, video frames_to_objects('rope', first, Last)) &
 in(frames, video object_to_frames('rope', Object)) &
 in(Actor, relation equal ('cast', role, Object)).

query2(first, Last, Object, frames, Actor) :-
 in(Object, video frames_to_objects('rope', first, Last)) &
 in(Actor, relation equal ('cast', role, Object)) &
 in(frames, video object_to_frames('rope', Object)).

query3(first, Last, Object, Actor) :-
 in(Object, video frames_to_objects('rope', first, Last)) &
 in(Actor, relation equal ('cast', role, Object)).

query4(first, Last, Object, Actor) :-
 in(P, relation all ('cast')) &
 ==(P mum, Actor) &
 ==(P role, Object) &
 in(Object, video frames_to_objects('rope', first, Last)).