Schema Design and Join
Outline

- An example of reducing E/R model to relational schema
- Examples of join
E/R model
Step 1: Entities

- Entities that can be uniquely identified by its own attribute(s), e.g.
 - `customer_id` identifies customer
 - `account_num` identifies account

- Four tables
 - `branch=(branch_name, branch_city, assets)`
 - `customer=(customer_id, customer_name, customer_addr)`
 - `loan=(loan_number, amount)`
 - `account=(account_num, balance)`
Step 2: Many-to-many relationship

- Two tables: attributes are primary keys of participating entities
 - \(\text{borrower} = (\text{customer_id, loan_number}) \)
 - \(\text{depositor} = (\text{customer_id, account_number}) \)
Step 3: Many-to-one relationship

- Two options:
 - A new table for the relationship
 - Add extra attribute(s) to “many” side
- New table
 - `loan_branch(loan_number, branch_name)`
- Add an extra attribute to `loan`
 - `loan=(loan_number, amount, branch_name)`
Step 4: ISA relationship

- Two tables
 - savings_account=(account_number, interest_rate)
 - checking_account=(account_number, overdraft_amount)
Step 5: Identify primary key & foreign key
Join: connect records from different tables

- Equal-join
 - condition is “=”
 - In many cases, they are primary key-foreign key relationships

- Non-equal join
 - condition is “<” “>” or “<>”
Equal-join (primary key-foreign key)

- Find all the customers who have loan account in the branch “Gilman Dr”
 - SELECT c.customer_name
 - FROM customer c, borrow b, loan l
 - WHERE c.customer_id = b.customer_id AND b.loan_number = l.loan_number AND l.branch_name = ‘Gilman Dr’
Equal Join (ordinary attributes)

- **Schema**
 - Candidate(\textit{cid}, \textit{name}, \textit{expect_salary}, \textit{city})
 - Job(\textit{jid}, \textit{company_name}, \textit{salary}, \textit{city})

- \textit{Find candidate-job pairs such that they are in the same city and job’s salary is at most 60k}
 - SELECT *
 - FORM candidate c, job j
 - WHERE c.city = j.city AND j.salary <= 60
Non-equal Join

- Schema
 - Candidate(
 - cid
 - name
 - expect_salary
 - city
)
 - Job(
 - jid
 - company_name
 - salary
 - city
)

- Find candidate-job pairs such that candidate’s expectation salary is lower than job’s
 - SELECT *
 - FROM candidate c, job j
 - WHERE c.expect_salary < j.salary
backup
Primary key

- $\text{customer}= (\text{customer_id, customer_name, customer_addr})$
 - Two rows t_1, t_2 in the customer table
 - If $t_1.\text{customer_id} = t_2.\text{customer_id}$.
 - then $t_1.\text{customer_name} = t_1.\text{customer_name}$ AND $t_1.\text{customer_addr} = t_2.\text{customer_addr}$
Foreign key

- Foreign key identifies a column or a set of columns in one (referencing) table that refers to a column or set of columns in another (referenced) table.
- The values in one row of the referencing columns must occur in a single row in the referenced table.
- Example
 - \(customer=(customer_id, customer_name, customer_addr) \)
 - \(borrower=(customer_id, loan_number) \)
 - \(borrower.customer_id \) must exist in customer