FROM RELATIONAL TO OBJECT DATABASE MANAGEMENT SYSTEMS

V. CHRISTOPHIDES

Department of Computer Science & Engineering
University of California, San Diego
ICS - FORTH, Heraklion, Crete

I) INTRODUCTION
What is a DBMS?

- **Database**: Logically coherent collection of “computerized” data
 - Stored Data: Persistent facts with some inherent meaning
 - Accessible Data: Extracted and derived facts for a specific purpose
- **Database Management System**: General purpose software that facilitates the process of defining, constructing and manipulating database for various applications. It offers the following services:
 - Data Persistence
 - Disk Management
 - Data Sharing
 - Data Reliability
 - Ad hoc Queries

DBMS Applications

- **Administration & Management**
 - Bank Accounts
 - Company Stocks & Personal
 - Airline Reservation
 - University Courses and Notes
 - Library Books Borrowing
- **Media & Net-centric Applications**
 - Engineering (CAD/CAM/CIM/CAE)
 - Scientific Applications
 - Genome Databases, Environmental Applications (GIS)
 - Telecommunications + Databases
 - Network management, Telemedicine, Info Brokering
 - Multimedia, Entertainment, Visualization
 - Interactive, Virtual Reality based
 - Software Design and Management
 - Data Warehouses
 - Web Site Management
 - Electronic Commerce
DBMS vs. other types of software

- Effective Manipulation of Persistent Data
 - recovery from failures
 - concurrent access
 - security & integrity controls
 - data independence physical & logical & user

- Efficient Access to Large Data Volumes
 - buffer management
 - indexing/clustering
 - query optimization
 - distribution

Example: Phone Directory

- One file:
 - first and last name, address, profession, telephone number

- Two type of access:
 - Direct by first/last name (white pages)
 - Sequential by profession headings (yellow pages)

- Implementation without a DBMS:
 - Hashing on first/last name (key) and linked lists of profession headings
 - Change of the access mode implies PROGRAM RERWITING

- Implementation with a DBMS:
 - Choice of a physical structure
 - Choice of a logical structure
 - Application programs are build on the top of data logical structuring
The ANSI-SPARC Architecture

- **External Level:**
 - What actually seen by users (not necessary the whole database)

- **Conceptual Level:**
 - Modeling of the real-word data, independent from the underlying DBMS

- **Internal Level:** How data is physically stored
 - **Logical-schema:** Logical organization of data using the DBMS data model (tables, etc.)
 - **Physical-schema:** Physical organization of data in the secondary memory (files, records, etc.)

➲ The ability to modify a scheme definition in one level without affecting a scheme definition in a higher level is called **data independence**

Three Level Architecture

![Diagram of three-level architecture](image)
The Data Independence issue

- **Physical** (for optimization)
 - Changes of physical structures don’t affect data logical organization
 - EXAMPLE: Addition/Suppression of indices in a DBMS

- **Logical** (for maintainability)
 - Modifications of data logical structure should not affect programs
 - EXAMPLE: New Relations/Attributes in the logical schema of a DBMS

- **User** (for flexibility)
 - Multiple views on the same logical organization of data
 - EXAMPLE: Secretary and Professor views on a University database

✔ Data independence is achieved by *inter-level mappings*
✔ Queries are translated between levels automatically

Mappings in DBMS
DBMS Components

- **Data Collections:**
 - Minimizing data redundancy
 - Enabling multi-user access

- **People:**
 - Database Designer
 - Database Administrator
 - Application Programmers
 - End-Users

- **Hardware:**
 - Processor(s)
 - Main Memory
 - Secondary Storage (e.g., disks, CD-ROMs, etc.)

- **Software:**
 - The Storage Manager: buffer and file manager
 - The Transaction Manager: locking, logging, and transaction commitment (ACID)
 - The Query Processor: parsing, optimization, execution
 - Various Automated Tools: Development and Design aids, Report writers, etc.

Typical Architecture of a DBMS

```
<table>
<thead>
<tr>
<th>Schema Modifications</th>
<th>Queries</th>
<th>Data Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&quot;Query&quot; Processor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage Manager</td>
<td>Transaction Manager</td>
</tr>
<tr>
<td></td>
<td>Data &amp; Metadata</td>
<td></td>
</tr>
</tbody>
</table>
```
Application Development: Backend vs. Frontend

- Backend ➔ the DBMS
- Frontend ➔ Applications which run on top of the DBMS
- Examples of vendor-provided applications or tools
 - Query language processor
 - Business graphics sub-systems
 - Spreadsheet
 - Statistical packages
 - Application generators
 - CASE Tools
 - Report writer
 - Web-DBMS Gateways
- Examples of typical utilities to help DBAs in various tasks
 - Load routines
 - Unload/Reload routines
 - Reorganization routines
 - Statistic routines
 - Analysis routines

Application Development: Client/Server Architecture

- Partition of programs between client and server processes, communicating via queries
- Hierarchical partition of functions
 - Data at the servers are shared by several clients
 - Graphical interfaces at the end-user workstations
 - Communication through standardized protocols
 - Distribution of application programs in order to minimize transfer costs
Client/Server Architecture: First Generation

SERVER

- **DBMS**
 - NT, UNIX, NOVELL
 - GCOS, VMS, MVS

CLIENTS

- Windows
- NT
- UNIX

Queries \rightarrow Results

Client/Server Architecture: Second Generation

- **Stored Procedures**
 - Procedure accomplish a service function on data

- **Service-oriented** architecture rather than query-oriented
 - Distribution of data manipulation

- **Extensibility and Scalability**
 - Possibility to have several, eventually redundant, servers
 - Possibility to have private data on clients
Client/Server Architecture: Third Generation

- Integration of the Web with the client-server
 - Use Web browsers for a standard presentation to the client
 - Possibility to run small client application (applets)
 - Significant portability (Virtual Private Network, Intranet, Internet)
- Three(or Multi)-tiered Architectures
 - Databases with stored procedures
 - Shared application services
- Hypermedia support
 - Various media types which can be extended (text, image, video)
 - Navigation between documents and applications

Database Technology Timeline

<table>
<thead>
<tr>
<th>Simple Data Management</th>
<th>Global Enterprise Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-relational</td>
<td>Enterprise-capable Relational</td>
</tr>
<tr>
<td>Early 80s</td>
<td>Internet Computing</td>
</tr>
<tr>
<td>Late 80s</td>
<td></td>
</tr>
<tr>
<td>Early 90s</td>
<td></td>
</tr>
<tr>
<td>Late 90s - 21st C</td>
<td></td>
</tr>
<tr>
<td>Simple OLTP</td>
<td>Packaged & Vertical Applications</td>
</tr>
<tr>
<td>Simple transactions, on-line backup & recovery</td>
<td></td>
</tr>
<tr>
<td>Stored procedures, triggers</td>
<td></td>
</tr>
<tr>
<td>Scaleable OLTP, parallel query, partitioning, cluster support, row-level locking, high availability</td>
<td></td>
</tr>
<tr>
<td>Support for all types of data, extensibility, objects</td>
<td></td>
</tr>
<tr>
<td>Middleware (messaging, queues, events) Java, CORBA, Web interfaces</td>
<td></td>
</tr>
</tbody>
</table>