Query Processing Notes

Query Processing

- The query processor turns user queries and data modification commands into a query plan - a sequence of operations (or algorithm) on the database
 - from high level queries to low level commands
- Decisions taken by the query processor
 - Which of the algebraically equivalent forms of a query will lead to the most efficient algorithm?
 - For each algebraic operator what algorithm should we use to run the operator?
 - How should the operators pass data from one to the other? (eg, main memory buffers, disk buffers)

Example

Select B, D
From R, S
Where R.A = "c" ∧ S.E = 2 ∧ R.C=S.C
• How do we execute query eventually?

- Scan relations
- Do Cartesian product
- Select tuples
- Do projection

One idea

Answer B | D
2 | x

• How do we execute query eventually?

- Scan relations
- Do Cartesian product
- Select tuples
- Do projection

One idea

Answer B | D
2 | x

• How do we execute query eventually?

- Scan relations
- Do Cartesian product
- Select tuples
- Do projection

One idea

Answer B | D
2 | x

• How do we execute query eventually?

- Scan relations
- Do Cartesian product
- Select tuples
- Do projection

One idea

Answer B | D
2 | x
Relational Algebra - can be enhanced to describe plans...

Ex: Plan I

\[\Pi_{B,D} (\sigma_{R.A = "c" \land S.E = 2 \land R.C = S.C} (R \times S)) \]

OR: \[\Pi_{B,D} (\sigma_{R.A = "c" \land S.E = 2 \land R.C = S.C} (R \times S)) \]

“FLY” and “SCAN” are the defaults

Ex: Plan I

\[\Pi_{B,D} (\sigma_{R.A = "c" \land S.E = 2 \land R.C = S.C} (R \times S)) \]

Another idea:

Plan II

Scan R and S, perform on the fly selections, do hash join, project
Plan III
Use R.A and S.C Indexes
(1) Use R.A index to select R tuples
with R.A = “c”
(2) For each R.C value found, use S.C
index to find matching join tuples
(3) Eliminate join tuples S.E ≠ 2
(4) Project B,D attributes
Algebraic Form of Plan

From Query To Optimal Plan

• Complex process
• Algebra-based logical and physical plans
• Transformations
• Evaluation of multiple alternatives

Issues in Query Processing and Optimization

• Generate Plans
 – employ efficient execution primitives for computing relational algebra operations
 – systematically transform expressions to achieve more efficient combinations of operators
• Estimate Cost of Generated Plans
 – Statistics
• “Smart” Search of the Space of Possible Plans
 – always do the “good” transformations (relational algebra optimization)
 – prune the space (e.g., System R)
• Often the above steps are mixed
Example: The Journey of a Query

SELECT Theater
FROM Movie M, Schedule S
WHERE
M.Title = S.Title
AND M.Actor="Winger"

The Journey of a Query cont’d: Summary of Logical Plan Generator

- 4 logical query plans created
- algebraic rewritings were used for producing the candidate logical query plans
- the last one is the winner (at least, cannot be a big loser)
- in general, multiple logical plans may "win" eventually
The Journey of a Query Continues at the Physical Plan Generator

Physical Plan Generators chooses execution primitives and data passing

Physical Plan 1

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Movie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theater</td>
<td>S.Title=M.Title</td>
</tr>
<tr>
<td>M.Actor="Winger"</td>
<td></td>
</tr>
</tbody>
</table>

Physical Plan 2

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Movie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theater</td>
<td>S.Title=M.Title</td>
</tr>
<tr>
<td>M.Actor="Winger"</td>
<td></td>
</tr>
</tbody>
</table>

More than one plans may be generated by choosing different primitives.

Example: Nested SQL query

```sql
SELECT title
FROM StarsIn
WHERE starName IN (
    SELECT name
    FROM MovieStar
    WHERE birthdate LIKE '%1960'
);
```

(Find the movies with stars born in 1960)

Example: Parse Tree

```
<Query>
  <SelList>
    <Attribute> title </Attribute>
  </SelList>
  FROM StarsIn
  WHERE starName IN ( 
    SELECT name
    FROM MovieStar
    WHERE birthdate LIKE '%1960'
  )
```

```sql
SELECT name
FROM MovieStar
WHERE birthdate LIKE '%1960'
```
Example: Generating Relational Algebra

\[
\Pi \text{title} \\
\sigma \text{starName} = \text{name} \\
\text{StarsIn} \rightarrow <\text{condition}> \\
\text{IN} \rightarrow \Pi \text{name} \\
\text{<attribute>} \rightarrow \sigma \text{birthdate} \text{ LIKE } \%1960\% \\
\text{starName} \rightarrow \text{MovieStar}
\]

An expression using a two-argument \(\sigma\), midway between a parse tree and relational algebra.

Example: Logical Query Plan (Relational Algebra)

\[
\Pi \text{title} \\
\sigma \text{starName} = \text{name} \\
\times \\
\text{StarsIn} \rightarrow \Pi \text{name} \\
\sigma \text{birthdate} \text{ LIKE } \%1960\% \\
\text{MovieStar}
\]

May consider “IN” elimination as a rewriting in the logical plan generator or may consider it a task of the converter.

Example: Improved Logical Query Plan

\[
\Pi \text{title} \\
\text{starName} = \text{name} \\
\times \\
\text{StarsIn} \rightarrow \Pi \text{name} \\
\sigma \text{birthdate} \text{ LIKE } \%1960\% \\
\text{MovieStar}
\]

Question: Push project to StarsIn?
Example: Result sizes are important for selecting physical plans

\[\text{StarsIn} \xrightarrow{\text{Need expected size}} \Pi \sigma \text{birthdate LIKE} \%1960\% \text{MovieStar} \]

Example: One Physical Plan

\[\text{StarsIn} \xrightarrow{\text{SCAN}} \Pi \text{title} \xrightarrow{\text{Additional parameters: memory size, result sizes...}} \Pi \text{name} \xrightarrow{\text{INDEX birthdate LIKE} \%1960\%} \text{MovieStar} \]

Topics

- Bag Algebra and other extensions
 - name & value conversions, functions, aggregation
Algebraic Operators: A Bag version

- Union of R and S: a tuple t is in the result as many times as the sum of the number of times it is in R plus the times it is in S.
- Intersection of R and S: a tuple t is in the result the minimum of the number of times it is in R and S.
- Difference of R and S: a tuple t is in the result the number of times it is in R minus the number of times it is in S.
- $\delta(R)$ converts the bag R into a set.

SQL's $R \cup S$ is really $\delta(R \cup S)$.

Example: Let $R = \{A,B,B\}$ and $S = \{C,A,B,C\}$. Describe the union, intersection and difference...

Extended Projection

- We extend the relational project π_A as follows:
 - The attribute list may include $x \rightarrow y$ in the list A to indicate that the attribute x is renamed to y.
 - Arithmetic or string operators on attributes are allowed. For example,
 - $a+b \rightarrow x$ means that the sum of a and b is renamed into x.
 - $c||d \rightarrow y$ concatenates the result of c and d into a new attribute named y.
- The result is computed by considering each tuple in turn and constructing a new tuple by picking the attributes names in A and applying renamings and arithmetic and string operators.
- **Example:**

An Alternative Approach to Arithmetic and Other 1-1 Computations

- Special purpose operators that for every input tuple they produce one output tuple.
 - $\text{MULT}_{A,B \rightarrow C}R$: for each tuple of R, multiply attribute A with attribute B and put the result in a new attribute named C.
 - $\text{PLUS}_{A,B \rightarrow C}R$
 - $\text{CONCAT}_{A,B \rightarrow C}R$
- **Exercise:** Write the above operators using extended projection. Assume the schema of R is $R(A,B,D,E)$.

Product and Joins

- Product of R and S (R×S):
 - If an attribute named a is found in both schemas then rename one column into R.a and the other into S.a
 - If a tuple r is found n times in R and a tuple s is found m times in S then the product contains nm instances of the tuple rs

- Joins
 - Natural Join R×S = πC(σC(R×S)) where
 - C is a condition that equates all common attributes
 - A is the concatenated list of attributes of R and S with no duplicates
 - you may view the above as a rewriting rule
 - Theta Join
 - arbitrary condition involving multiple attributes

Grouping and Aggregation

- Operators that combine the GROUP-BY clause with the aggregation operator (AVG, SUM, MIN, MAX, …)
- SUM
 - SUM(GroupbyList, GroupedAttribute) → ResultAttribute
 - R corresponds to SELECT GroupbyList,
 - SUM(GroupedAttribute) AS ResultAttribute
 - FROM R
 - GROUP BY GroupbyList
- Similar for AVG, MIN, MAX, COUNT …
- Note that δ(R) could be seen as a special case of grouping and aggregation
- Example

Relational algebra optimization

- Transformation rules
 - (preserve equivalence)
- What are good transformations?
Algebraic Rewritings:
Commutativity and Associativity

- Cartesian Product
- Natural Join

Question 1: Do the above hold for both sets and bags?
Question 2: Do commutativity and associativity hold for arbitrary Theta Joins?

Algebraic Rewritings:
Commutativity and Associativity (2)

- Union
- Intersection

Question 1: Do the above hold for both sets and bags?
Question 2: Is difference commutative and associative?

Algebraic Rewritings for Selection:
Decomposition of Logical Connectives

- \(\sigma_{\text{cond1}} \) AND \(\sigma_{\text{cond2}} \)
- \(\sigma_{\text{cond1}} \) OR \(\sigma_{\text{cond2}} \)

Does it apply to bags?
Algebraic Rewritings for Selection:
Decomposition of Negation

Question

$\sigma_{\text{cond1 AND NOT}\text{cond2}} R$

$\sigma_{\text{NOT cond2}} R$

$\sigma_{\text{cond1 OR NOT cond2}} R$

Complete

Pushing the Selection Thru Binary Operators: Union and Difference

Exercise: Do the rule for intersection

Pushing Selection thru Cartesian Product and Join

Exercise: Do the rule for theta join
Rules: π, σ combined

Let x = subset of R attributes
z = attributes in predicate P
(subset of R attributes)

$\pi_x[\sigma_p(R)] = \pi_x[\sigma_p(\pi_z(R))]$

Pushing Simple Projections Thru Binary Operators

A projection is simple if it only consists of an attribute list

$$R \uplus S \quad \leftrightarrow \quad \pi_{R} \downarrow \cup \downarrow \pi_{S}$$

Union

Question 1: Does the above hold for both bags and sets?
Question 2: Can projection be pushed below intersection and difference?
Answer for both bags and sets.

Pushing Simple Projections Thru Binary Operators: Join and Cartesian Product

$$R \times S \quad \leftrightarrow \quad \pi_{B} \downarrow \times \downarrow \pi_{C}$$

Where B is the list of R attributes that appear in A.
Similar for C.

Question: What is B and C?

Exercise: Write the rewriting rule that pushes projection below theta join.
Some Rewriting Rules Related to Aggregation: SUM

- $\sigma_{\text{cond}} \sum_{\text{GroupbyList};\text{GroupedAttribute}} \rightarrow \sum_{\text{ResultAttribute} R}$
 $\Leftrightarrow \sum_{\text{GroupbyList};\text{GroupedAttribute}} \rightarrow \sum_{\text{ResultAttribute} R}$, if cond involves only the GroupbyList

- $\sum_{\text{GL};\text{GA}} \rightarrow \sum_{\text{RA}} (\sum_{\text{RA};\text{RA}} \rightarrow \sum_{\text{RA}} \sum_{\text{GL};\text{GA}} \rightarrow \sum_{\text{RA}})$

- $\sum_{\text{GL}2;\text{RA}1} \rightarrow \sum_{\text{RA}2} \sum_{\text{GL}1;\text{GA}} \rightarrow \sum_{\text{RA}1} \sum_{\text{RA}2}$
 $\Leftrightarrow \sum_{\text{GL}2} \rightarrow \sum_{\text{GA}} \sum_{\text{RA}2}$

Question: does the above hold for both bags and sets?

Derived Rules: $\sigma + \bowtie$ combined

More Rules can be Derived:

- $\sigma_{p \bowtie q} (R \bowtie S) =$
- $\sigma_{p \bowtie q \bowtie m} (R \bowtie S) =$
- $\sigma_{p \bowtie q} (R \bowtie S) =$

p only at R, q only at S, m at both R and S
-- Derivation for first one:

\[\sigma_{p \land q} (R \bowtie S) = \]

\[\sigma_p [\sigma_q (R \bowtie S)] = \]

\[\sigma_p [R \bowtie \sigma_q (S)] = \]

\[[\sigma_p (R)] \bowtie [\sigma_q (S)] \]

Which are always “good” transformations?

- \[\sigma_{p1 \land p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)] \]
- \[\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S \]
- \[R \bowtie S \rightarrow S \bowtie R \]
- \[\pi_x [\sigma_p (R)] \rightarrow \pi_x \{ \sigma_p [\pi_{xz} (R)] \} \]

In textbook: more transformations

- Eliminate common sub-expressions
- Other operations: duplicate elimination
Bottom line:

- No transformation is always good at the l.q.p level
- Usually good:
 - early selections
 - elimination of cartesian products
 - elimination of redundant subexpressions
- Many transformations lead to "promising" plans
 - Commuting/rearranging joins
 - In practice too "combinatorially explosive" to be handled as rewriting of l.q.p.

Arranging the Join Order: the Wong-Youssefi algorithm (INGRES)

Sample TPC-H Schema

+ Nation(NationKey, NName)
+ Customer(CustKey, CName, NationKey)
+ Order(OrderKey, CustKey, Status)
+ LineItem(OrderKey, PartKey, Quantity)
+ Product(SuppKey, PartKey, PName)
+ Supplier(SuppKey, SName)

SELECT SName
FROM Nation, Customer, Order, LineItem, Product, Supplier
WHERE Nation.NationKey = Customer.NationKey
AND Customer.CustKey = Order.CustKey
AND Order.OrderKey = LineItem.OrderKey
AND LineItem.PartKey = Product.PartKey
AND Product.Suppkey = Supplier.Suppkey
AND NName = "Canada"

Challenges with Large Natural Join Expressions

For simplicity, assume that in the query
1. All joins are natural
2. Whenever two tables of the FROM clause have common attributes we join on them
1. Consider Right-Index only
Multiple Possible Orders

Wong-Yussefi algorithm assumptions and objectives

- Assumption 1 (weak): Indexes on all join attributes (keys and foreign keys)
- Assumption 2 (strong): At least one selection creates a small relation
 - A join with a small relation results in a small relation
- Objective: Create sequence of index-based joins such that all intermediate results are small

Hypergraphs

- relation hyperedges
- two hyperedges for same relation are possible
- each node is an attribute
- can extend for non-natural equality joins by merging nodes
Small Relations/Hypergraph Reduction

“Nation” is small because it has the equality selection \(NName = "Canada" \)

Pick a small relation (and its conditions) to start the plan

Remove small relation (hypergraph reduction) and color as "small" any relation that joins with the removed "small" relation

Pick a small relation (and its conditions if any) and join it with the small relation that has been reduced

After a bunch of steps…
SELECT S.SName
FROM Nation, Customer, Order, LineItem L, Product P, Supplier S,
 LineItem LE, Product PE, Supplier Enron
WHERE Nation.NationKey = Customer.NationKey
AND Customer.CustKey = Order.CustKey
AND Order.OrderKey=L.OrderKey
AND L.PartKey= P.Partkey
AND P.Suppkey = S.SuppKey
AND Order.OrderKey=LE.OrderKey
AND LE.PartKey= PE.Partkey
AND PE.Supplykey = Enron.Supplykey
AND Enron.Sname = "Enron"
AND NName = "Cayman"

Find the names of suppliers whose products appear in an order made by a customer who is in Cayman Islands and an Enron product appears in the same order.

Multiple choices are possible
<table>
<thead>
<tr>
<th>CName</th>
<th>CustKey</th>
<th>NationKey</th>
<th>NName</th>
<th>Status</th>
<th>OrderKey</th>
<th>Quantity</th>
<th>PartKey</th>
<th>SuppKey</th>
<th>PName</th>
<th>SName</th>
<th>L</th>
<th>Product</th>
<th>PE</th>
<th>Supplier</th>
<th>Enron</th>
<th>LineItem</th>
<th>LE</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[\sigma \text{NName} = \text{"Cayman"} \]

\[\sigma \text{SName} = \text{"Enron"} \]

\[R_I \]
Algorithms for Relational Algebra Operators

- Three primary techniques
 - Sorting
 - Hashing
 - Indexing
- Three degrees of difficulty
 - Data small enough to fit in memory
 - Too large to fit in main memory but small enough to be handled by a "two pass" algorithm
 - So large that "two pass" methods have to be generalized to "multi pass" methods (quite unlikely nowadays)

Estimating IOs:

- Count # of disk blocks that must be read (or written) to execute query plan

To estimate costs, we may have additional parameters:

- $B(R)$ = # of blocks containing R tuples
- $f(R)$ = max # of tuples of R per block
- M = # memory blocks available
- $HT(i)$ = # levels in index i
- $LB(i)$ = # of leaf blocks in index i
Clustering index

Index that allows tuples to be read in an order that corresponds to physical order

<table>
<thead>
<tr>
<th>A</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

Clustering can radically change cost

- Clustered file organization

 \[\text{R1 R2 S1 S2} \quad \text{R3 R4 S3 S4} \quad \ldots \]

- Clustered relation

 \[\text{R1 R2 R3 R4} \quad \text{R5 R5 R7 R8} \quad \ldots \]

- Clustering index

Example \(\text{R1} \bowtie \text{R2} \) over common attribute C

\[\begin{align*}
T(\text{R1}) & = 10,000 \\
T(\text{R2}) & = 5,000 \\
S(\text{R1}) & = S(\text{R2}) = 1/10 \text{ block} \\
\text{Memory available} & = 101 \text{ blocks}
\end{align*} \]

→ Metric: # of IOs

 (ignoring writing of result)
Caution!
This may not be the best way to compare
• ignoring CPU costs
• ignoring timing
• ignoring double buffering requirements

• Iteration join (conceptually – without taking into account disk block issues)
 for each \(r \in R_1 \) do
 for each \(s \in R_2 \) do
 if \(r.C = s.C \) then output \(r,s \) pair

• Merge join (conceptually)
 (1) if \(R_1 \) and \(R_2 \) not sorted, sort them
 (2) \(i \leftarrow 1; j \leftarrow 1; \)
 While \((i \leq T(R_1)) \land (j \leq T(R_2))\) do
 if \(R_1\{i\}.C = R_2\{j\}.C \) then outputTuples
 else if \(R_1\{i\}.C > R_2\{j\}.C \) then \(j \leftarrow j+1 \)
 else if \(R_1\{i\}.C < R_2\{j\}.C \) then \(i \leftarrow i+1 \)
Procedure Output-Tuples

While \((R1_{i}.C = R2_{j}.C) \land (i \leq T(R1))\) do
 \[
 j_j \leftarrow j; \\
 \text{while } (R1_{i}.C = R2_{j}.j).C \land (j_j \leq T(R2)) \text{ do}
 \]
 \[
 \text{output pair } R1_{i}., R2_{j}.j; \\
 j_j \leftarrow j_j + 1 \\
 i \leftarrow i + 1
 \]

Example

<table>
<thead>
<tr>
<th></th>
<th>R1{i}.C</th>
<th>R2{j}.C</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

• Join with index (Conceptually)

For each \(r \in R1\) do
 \[
 X \leftarrow \text{index}(R2, C, r.C)
 \]
 for each \(s \in X\) do
 output \(r, s\) pair

Note: \(X \leftarrow \text{index}(\text{rel}, \text{attr}, \text{value})\)
 then \(X = \text{set of rel tuples with attr = value}\)
• Hash join (conceptual)
 – Hash function h, range 0 → k
 – Buckets for R1: G0, G1, ... Gk
 – Buckets for R2: H0, H1, ... Hk

Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets
(3) For i = 0 to k do
 match tuples in Gi, Hi buckets

Simple example hash: even/odd

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>Even</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>4 8</td>
<td>2 4 8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12 8 14</td>
<td>4 12 8 14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3 13</td>
<td>3 5 9</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>9 13 11</td>
<td>5 3 13 11</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factors that affect performance
(1) Tuples of relation stored physically together?
(2) Relations sorted by join attribute?
(3) Indexes exist?
Disk-oriented Computation Model

- There are M main memory buffers.
 - Each buffer has the size of a disk block.
- The input relation is read one block at a time.
- The cost is the number of blocks read.
- If B consecutive blocks are read the cost is B/d.
- The output buffers are not part of the M buffers mentioned above.
 - *Pipelining* allows the output buffers of an operator to be the input of the next one.
 - We do not count the cost of writing the output.

Notation

- $B(R)$ = number of blocks that R occupies
- $T(R)$ = number of tuples of R
- $V(R, [a_1, a_2, ..., a_n])$ = number of distinct tuples in the projection of R on $a_1, a_2, ..., a_n$

One-Pass Main Memory Algorithms for Unary Operators

- Assumption: Enough memory to keep the relation
- Projection and selection:
 - Scan the input relation R and apply operator one tuple at a time
 - Incremental cost of “on the fly” operators is 0
 - Cost depends on
 - clustering of R
 - whether the blocks are consecutive
- Duplicate elimination and aggregation
 - create one entry for each group and compute the aggregated value of the group
 - it becomes hard to assume that CPU cost is negligible
 - main memory data structures are needed
One-Pass Nested Loop Join

- Assume $B(R)$ is less than M
- Tuples of R should be stored in an efficient lookup structure
- **Exercise**: Find the cost of the algorithm below

```plaintext
for each block $B_r$ of $R$
do 
  store tuples of $B_r$ in main memory 
  for each block $B_s$ of $S$
do 
    for each tuple $s$ of $B_s$
      join tuples of $s$ with matching tuples of $R$
```

Generalization of Nested-Loops

```plaintext
for each chunk of $M-1$ blocks $B_r$ of $R$
do 
  store tuples of $B_r$ in main memory 
  for each block $B_s$ of $S$
do 
    for each tuple $s$ of $B_s$
      join tuples of $s$ with matching tuples of $R$

**Exercise**: Compute cost
```

Simple Sort-Merge Join

- Assume natural join on C
- Sort R on C using the two-phase multiway merge sort
 - if not already sorted
- Sort S on C
- Merge (opposite side)
 - assume two pointers Pr, Ps to tuples on disk, initially pointing at the start
 - sets R', S' in memory
- **Remarks**:
 - Very low average memory requirement during merging (but no guarantee on how much is needed)
- **Cost**:

```plaintext
while $Pr$ != EOF and $Ps$ != EOF
  if *Pr[C] == *Ps[C]
    do_cart_prod(Pr, Ps)
  else if *Pr[C] > *Ps[C]
    Ps++
  else if *Ps[C] > *Pr[C]
    Pr++
  function do_cart_prod(Pr, Ps)
    val = *Pr[C]
    while *Pr[C] == val
      store tuple *Pr in set $R'$
      while *Ps[C] == val
        store tuple *Ps in set $S'$
        output cartesian product of $R'$ and $S'$
```
Efficient Sort-Merge Join

- Idea: Save two disk I/O’s per block by combining the second pass of sorting with the “merge”.
- Step 1: Create sorted sublists of size M for R and S
- Step 2: Bring the first block of each sublist to a buffer
 - assume no more than M sublists in all
- Step 3: Repeatedly find the least C value c among the first tuples of each sublist. Identify all tuples with join value c and join them.
 - When a buffer has no more tuple that has not already been considered load another block into this buffer.

Efficient Sort-Merge Join Example

R

C R
1 r_1
2 r_2
3 r_3
20 r_{20}

S

C S
1 s_1
5 s_5
16 s_{16}
20 s_{20}

R

3 7 8 10 11 13 14 16 17 18
1 2 4 5 6 9 12 15 19 20

S

1 3 5 7
2 4 16 18 19 20

Two-Pass Hash-Based Algorithms

- General Idea: Hash the tuples of the input arguments in such a way that all tuples that must be considered together will have hashed to the same hash value.
 - If there are M buffers pick $M-1$ as the number of hash buckets
- Example: Duplicate Elimination
 - Phase 1: Hash each tuple of each input block into one of the $M-1$ bucket/buffers. When a buffer fills save to disk.
 - Phase 2: For each bucket:
 - load the bucket in main memory,
 - treat the bucket as a small relation and eliminate duplicates
 - save the bucket back to disk.
 - Catch: Each bucket has to be less than M.
 - Cost:
Hash-Join Algorithms

- Assuming natural join, use a hash function that
 - is the same for both input arguments \(R \) and \(S \)
 - uses only the join attributes
- Phase 1: Hash each tuple of \(R \) into one of the \(M-1 \) buckets \(R_i \) and similar each tuple of \(S \) into one of \(S_j \)
- Phase 2: For \(i=1...M-1 \)
 - load \(R_i \) and \(S_i \) in memory
 - join them and save result to disk
- **Question**: What is the maximum size of buckets?
- **Question**: Does hashing maintain sorting?

Index-Based Join: The Simplest Version

Assume that we do natural join of \(R(A,B) \) and \(S(B,C) \) and there's an index on \(S \)

for each \(Br \) in \(R \) do
for each tuple \(r \) of \(Br \) with \(B \) value \(b \)
 use index of \(S \) to find tuples \(\{s_1, s_2, ..., s_n\} \) of \(S \) with \(B=b \)
 output \(\{rs_1, rs_2, ..., rs_n\} \)

Cost: Assuming \(R \) is clustered and non-sorted and the index on \(S \) is clustered on \(B \) then
\(B(R) + T(R)B(S)/V(S,B) + \) some more for reading index

Question: What is the cost if \(R \) is sorted?

Opportunities in Joins Using Sorted Indexes

- Do a conventional Sort-Join avoiding the sorting of one or both of the input operands
Estimating cost of query plan

(1) Estimating size of results
(2) Estimating # of IOs

Estimating result size

- Keep statistics for relation R
 - \(T(R) \) : # tuples in R
 - \(S(R) \) : # of bytes in each R tuple
 - \(B(R) \) : # of blocks to hold all R tuples
 - \(V(R, A) \) : # distinct values in R for attribute A

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

\[T(R) = 5 \quad S(R) = 37 \]
\[V(R, A) = 3 \quad V(R, C) = 5 \]
\[V(R, B) = 1 \quad V(R, D) = 4 \]
Size estimates for $W = R_1 \times R_2$

$T(W) = T(R_1) \times T(R_2)$

$S(W) = S(R_1) + S(R_2)$

Size estimate for $W = \sigma_{Z=val}(R)$

$S(W) = S(R)$

$T(W) = ?$

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

$V(R,A)=3$
$V(R,B)=1$
$V(R,C)=5$
$V(R,D)=4$

$W = \sigma_{Z=val}(R)$

$T(W) = \frac{T(R)}{V(R,Z)}$
What about \(W = \sigma_{z \geq \text{val}(R)} \)?

\[T(W) = ? \]

- Solution # 1:
 \[T(W) = T(R)/2 \]

- Solution # 2:
 \[T(W) = T(R)/3 \]

- Solution # 3: Estimate values in range

Example

\[
\begin{array}{c|c|c}
 R & Z & V(R,Z) = 10 \\
 \hline
 \text{Min} = 1 & \text{W} = \sigma_{z \geq 15}(R) & \text{Max} = 20 \\
 \hline
\end{array}
\]

\[f = \frac{20-15+1}{20-1+1} = \frac{6}{20} \quad \text{(fraction of range)} \]

\[T(W) = f \times T(R) \]

Equivalently:

\[f \times V(R,Z) = \text{fraction of distinct values} \]

\[T(W) = \left[f \times V(Z,R) \right] \times T(R) = f \times T(R) \]

\[V(Z,R) \]
Size estimate for \(W = R_1 \Join R_2 \)

Let \(x = \) attributes of \(R_1 \)
\(y = \) attributes of \(R_2 \)

Case 1
\[X \cap Y = \emptyset \]
Same as \(R_1 \times R_2 \)

Case 2
\(W = R_1 \Join R_2 \quad X \cap Y = A \)

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Assumption:
\(\Pi_A R_1 \subseteq \Pi_A R_2 \Rightarrow \) Every \(A \) value in \(R_1 \) is in \(R_2 \)
(typically \(A \) of \(R_1 \) is foreign key of the primary key of \(A \) of \(R_2 \))
\(\Pi_A R_2 \subseteq \Pi_A R_1 \Rightarrow \) Every \(A \) value in \(R_2 \) is in \(R_1 \)
“containment of value sets” (justified by primary key – foreign key relationship)

Computing \(T(W) \) when \(A \) of \(R_1 \) is the foreign key
\(\Pi_A R_1 \subseteq \Pi_A R_2 \)

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

1 tuple of \(R_1 \) matches with exactly 1 tuple of \(R_2 \)
so \(T(W) = T(R_1) \)
Another way to approach when
\[\Pi_A R_1 \subseteq \Pi_A R_2 \]

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take 1 tuple

1 tuple matches with \(T(R_2) \) tuples...

\[V(R_2, A) \]

so \(T(W) = \frac{T(R_2) \times T(R_1)}{V(R_2, A)} \)

\[\cdot V(R_1, A) \leq V(R_2, A) \quad T(W) = \frac{T(R_2) \times T(R_1)}{V(R_2, A)} \]

\[\cdot V(R_2, A) \leq V(R_1, A) \quad T(W) = \frac{T(R_2) \times T(R_1)}{V(R_1, A)} \]

[A is common attribute]

In general
\(W = R_1 \Join R_2 \)

\[T(W) = \frac{T(R_2) \times T(R_1)}{\max\{ V(R_1, A), V(R_2, A) \}} \]
Example 1(a) Iteration Join R1 \(\bowtie \) R2

- Relations not contiguous
- Recall \(T(R1) = 10,000 \) \(T(R2) = 5,000 \)
 \(S(R1) = S(R2) = \frac{1}{10} \) block
 \(\text{MEM} = 101 \) blocks

Cost: for each R1 tuple:
 \[\text{[Read tuple + Read R2]} \]
 Total = 10,000 \([1+5000] \) = 50,010,000 IOs

- Can we do better?
 Use our memory
 (1) Read 100 blocks of R1
 (2) Read all of R2 (using 1 block) + join
 (3) Repeat until done

Cost: for each R1 chunk:
 Read chunk: 1000 IOs
 \[\text{Read R2} \quad 5000 \text{ IOs} \]
 \[\overline{6000} \]

Total = \[\frac{10,000 \times 6000}{1,000} \] = 60,000 IOs
• Can we do better?
 ☛ Reverse join order: \(R_2 \Join R_1 \)
 \[
 \text{Total } = \frac{5000 \times (1000 + 10,000)}{1000} = 5 \times 11,000 = 55,000 \text{ IOs}
 \]

Example 1(b) Iteration Join \(R_2 \Join R_1 \)
• Relations contiguous
 Cost
 For each R2 chunk:
 Read chunk: 100 IOs
 Read R1: 1000 IOs
 Total= 5 chunks x 1,100 = 5,500 IOs

Example 1(c) Merge Join
• Both R1, R2 ordered by C; relations contiguous
 Memory
 \[
 \begin{array}{ccc}
 \text{R1} & \ldots & \text{R1} \\
 \text{R2} & \ldots & \text{R2}
 \end{array}
 \]
 Total cost: Read R1 cost + read R2 cost
 \[= 1000 + 500 = 1,500 \text{ IOs} \]
Example 1(d) Merge Join

- R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first…. HOW?

One way to sort: Merge Sort

(i) For each 100 blk chunk of R:
- Read chunk
- Sort in memory
- Write to disk

(ii) Read all chunks + merge + write out
Cost: Sort
Each tuple is read, written,
read, written
so...
Sort cost R1: 4 x 1,000 = 4,000
Sort cost R2: 4 x 500 = 2,000

Example 1(d) Merge Join (continued)
R1, R2 contiguous, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

But: Iteration cost = 5,500
so merge joint does not pay off!

But say R1 = 10,000 blocks contiguous
R2 = 5,000 blocks not ordered

Iterate: $5000 \times (100+10,000) = 50 \times 10,100$
$\frac{100}{100}$
= 505,000 IOs

Merge join: $5(10,000+5,000) = 75,000$ IOs

Merge Join (with sort) WINS!
How much memory do we need for merge sort?

E.g: Say I have 10 memory blocks

10
R1

100 chunks ⇒ to merge, need 100 blocks!

In general:
Say k blocks in memory
x blocks for relation sort
chunks = (x/k) size of chunk = k
chunks ≤ buffers available for merge

so... (x/k) ≤ k
or k² ≥ x or k ≥ √x

In our example
R1 is 1000 blocks, k ≥ 31.62
R2 is 500 blocks, k ≥ 22.36

Need at least 32 buffers
Can we improve on merge join?

Hint: do we really need the fully sorted files?

\[\text{Cost of improved merge join:} \]
\[C = \text{Read R1} + \text{write R1 into runs} + \text{read R2} + \text{write R2 into runs} + \text{join} \]
\[= 2000 + 1000 + 1500 = 4500 \]

---> Memory requirement?

Example 1(e) Index Join

- Assume R1.C index exists; 2 levels
- Assume R2 contiguous, unordered
- Assume R1.C index fits in memory
Cost: Reads: 500 IOs
for each R2 tuple:
- probe index - free
- if match, read R1 tuple: 1 IO

What is expected # of matching tuples?

(a) say R1.C is key, R2.C is foreign key
then expect = 1

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 = 2

What is expected # of matching tuples?

(c) Say DOM(R1, C)=1,000,000
T(R1) = 10,000
with alternate assumption
Expect = \frac{10,000}{1,000,000} = \frac{1}{100}
Total cost with index join

(a) Total cost = 500+5000(1)1 = 5,500
(b) Total cost = 500+5000(2)1 = 10,500
(c) Total cost = 500+5000(1/100)1 = 550

What if index does not fit in memory?
Example: say R1.C index is 201 blocks

• Keep root + 99 leaf nodes in memory
• Expected cost of each probe is
 \[E = \frac{(0)99 + (1)101}{200} \approx 0.5 \]

Total cost (including probes)

= 500+5000 [Probe + get records]
= 500+5000 [0.5+2] \quad \text{uniform assumption}
= 500+12,500 = 13,000 \quad \text{(case b)}

For case (c):
= 500+5000[0.5 \times 1 + (1/100) \times 1]
= 500+2500+50 = 3050 IOs
So far

<table>
<thead>
<tr>
<th>not contiguous</th>
<th>Iterate R2 ∧ R1</th>
<th>55,000 (best)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge Join</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort+ Merge Join</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1.C Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2.C Index</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>contiguous</th>
<th>Iterate R2 ∧ R1</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge join</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Sort+Merge Join</td>
<td>7500 → 4500</td>
</tr>
<tr>
<td></td>
<td>R1.C Index</td>
<td>5500 → 3050 → 550</td>
</tr>
<tr>
<td></td>
<td>R2.C Index</td>
<td></td>
</tr>
</tbody>
</table>

Example 1(f) Hash Join

- R1, R2 contiguous (un-ordered)
 - Use 100 buckets
 - Read R1, hash, + write buckets

```
R1  
  ▼
  100
  ▼
```

- Same for R2
- Read one R1 bucket; build memory hash table
- Read corresponding R2 bucket + hash probe

```
R1  
  ▼
```

Then repeat for all buckets
Cost:

“Bucketize:” Read R1 + write
Read R2 + write
Join: Read R1, R2

Total cost = 3 \times [1000 + 500] = 4500

Note: this is an approximation since buckets will vary in size and we have to round up to blocks

Minimum memory requirements:

Size of R1 bucket = \frac{x}{k}

k = number of memory buffers
x = number of R1 blocks

So... \frac{x}{k} < k

k > \sqrt{x} \quad \text{need: } k+1 \text{ total memory buffers}

Trick: keep some buckets in memory

E.g., k' = 33 R1 buckets = 31 blocks
keep 2 in memory

Memory use:

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Memory use</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>31 buffers</td>
</tr>
<tr>
<td>G1</td>
<td>31 buffers</td>
</tr>
<tr>
<td>Output</td>
<td>33-2 buffers</td>
</tr>
<tr>
<td>R1 input</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 94 buffers

6 buffers to spare!!
called hybrid hash-join
Next: Bucketize R2
- R2 buckets = $\frac{500}{33} = 16$ blocks
- Two of the R2 buckets joined immediately with G0,G1

Finally: Join remaining buckets
- for each bucket pair:
 - read one of the buckets into memory
 - join with second bucket

Cost
- Bucketize R1 = $1000 + 31 \times 31 = 1961$
- To bucketize R2, only write 31 buckets:
 so, cost = $500 + 31 \times 16 = 996$
- To compare join (2 buckets already done)
 read $31 \times 31 + 31 \times 16 = 1457$

Total cost = $1961 + 996 + 1457 = 4414$
How many buckets in memory?

- See textbook for answer...

Another hash join trick:
- Only write into buckets
 - `<val,ptr>` pairs
- When we get a match in join phase, must fetch tuples

To illustrate cost computation, assume:
- 100 `<val,ptr>` pairs/block
- Expected number of result tuples is 100
- Build hash table for R2 in memory
 - 5000 tuples \rightarrow $\frac{5000}{100} = 50$ blocks
- Read R1 and match
- Read ~ 100 R2 tuples

\[
\text{Total cost} = \begin{align*}
\text{Read R2:} & \quad 500 \\
\text{Read R1:} & \quad 1000 \\
\text{Get tuples:} & \quad \frac{100}{1600}
\end{align*}
\]
So far:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterate</td>
<td>5500</td>
</tr>
<tr>
<td>Merge join</td>
<td>1500</td>
</tr>
<tr>
<td>Sort+merge joint</td>
<td>7500</td>
</tr>
<tr>
<td>R1.C index</td>
<td>5500 → 550</td>
</tr>
<tr>
<td>R2.C index</td>
<td>_____</td>
</tr>
<tr>
<td>Build R.C index</td>
<td>_____</td>
</tr>
<tr>
<td>Build S.C index</td>
<td>_____</td>
</tr>
<tr>
<td>Hash join</td>
<td>4500+</td>
</tr>
<tr>
<td>with trick, R1 first</td>
<td>4414</td>
</tr>
<tr>
<td>with trick, R2 first</td>
<td>_____</td>
</tr>
<tr>
<td>Hash join, pointers</td>
<td>1600</td>
</tr>
</tbody>
</table>

Summary

- Iteration ok for "small" relations (relative to memory size)
- For equi-join, where relations not sorted and no indexes exist, hash join usually best
- Sort + merge join good for non-equijoin (e.g., R1.C > R2.C)
- If relations already sorted, use merge join
- If index exists, it could be useful (depends on expected result size)