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Abstract

Information integration systems have to cope
with the di�erent and limited query interfaces
of the underlying information sources. First,
the integration systems need descriptions of
the query capabilities of each source, i.e.,
the set of queries supported by each source.
Second, the integration systems need algo-
rithms for deciding how a query can be an-
swered given the capabilities of the sources.
Third, they need to translate a query into
the format that the source understands. We
present two languages suitable for descrip-
tions of query capabilities of sources and com-
pare their expressive power. We also de-
scribe algorithms for deciding whether a query
\matches" the description and show their ap-
plication to the problem of translating user
queries into source-speci�c queries and com-
mands. Finally, we propose new improved al-
gorithms for the problem of answering queries
using these descriptions.

1 Introduction

Users and applications today must integrate multiple
heterogeneous information systems, many of which are
not conventional SQL database management systems.
Examples of such systems are Web sources with forms
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Figure 1: A common architecture for integration

interfaces, object repositories, bibliographic databases,
etc. Some of these systems provide powerful query
capabilities, while others provide limited query inter-
faces. Systems that integrate information from multi-
ple sources have to cope with the di�erent and limited
capabilities of the sources. In particular, integrating
systems must allow users to query the data using a sin-
gle powerful query language, without having to know
about the diverse capabilities of each source. Such
systems need descriptions of the query capabilities of
the participating sources, i.e., descriptions of the set
of queries that each source supports. They also need
algorithms for adapting to the diverse capabilities of
the sources as speci�ed by the descriptions.

To further motivate the need for source descrip-
tions, let us consider the typical integration archi-
tecture of Figure 1. Mediators decompose incoming
client queries, which are expressed in some common
query language, into new common-language queries
which are supported by the wrappers. Then the wrap-
pers translate the incoming queries into source-speci�c
queries and commands. Both mediators and wrappers
need the descriptions:

�The mediators use the description to adapt to the
query capabilities of the sources. For example,
consider a source that exports a \lookup" cata-
log lookup(Employee ;Manager ; Specialty) for the em-
ployees of a company. The description indicates that
this source supports only selection queries. Let us
now assume that the client requests the managers



who have at least one employee specialized in Java
and at least one employee specialized in Databases.
Notice that this query is answered with a self join of
the lookup table on Manager. The mediator knows
that all the data needed for answering this query re-
side on \lookup"1 but �nding out how to retrieve this
data is nontrivial. The query processing algorithm
must infer from the description that only selection
queries can be submitted and then can come up with
the following plan for retrieving the required data:
First the mediator retrieves the set of managers of
Java employees, then the set of managers of Database
employees, and �nally it intersects the two sets.

�The wrappers need descriptions of the source capa-
bilities in order to translate the supported common-
language queries into queries and commands under-
stood by the source interface. In particular, each
description is associated with actions [1, 2] that per-
form the translation. Using this approach, in the
TSIMMIS project at Stanford [3] we have wrapped a
number of real life bibliographic sources.

What is an appropriate language for describing
the set of supported queries and its translation to
source-speci�c queries? Since we need descriptions
of supported queries along with translating actions,
Yacc programs look like a valid candidate. However,
Yacc programs do not capture the logical properties
of queries | they perceive queries as mere strings.
This behavior imposes limitations on both the medi-
ators and the wrappers. For example, the descrip-
tion may specify that an acceptable WHERE clause is
\lname='Smith' AND fname='John'". The wrapper
then does not know how to translate a query that asks
for \fname='John' AND lname='Smith'" because it
ignores the commutativity of AND. The mediator faces
even more severe problems, as we discuss in Section 8.

Since we want to preserve the salient connection be-
tween description and translation in Yacc, we propose
the use of Datalog variants as a more powerful de-
scription language. In particular, context-free gram-
mar rules can be thought of as Datalog rules with 0-
arity predicates. The introduction of new languages
for describing query capabilities brings up two ques-
tions studied in this paper: (i) are these languages
expressive enough? (ii) Given a description of the
wrappers' capabilities, how can we answer a client
query using only queries answerable (i.e., supported)
by the wrappers? We refer to this problem as the
Capabilities-Based Rewriting (CBR) problem [4, 5]; it
is also clearly related to the Answering Queries Using
Views problem [6, 7, 8] (see Section 3). In this paper,
we focus on sources that support conjunctive queries,
i.e., their capabilities are a subset of CQ [9]. The con-
tributions of this paper are as follows:

1In many cases the data reside at multiple sources and the
mediator may have to locate them �rst. However, �nding where
are the important data is a problem orthogonal to how they can
be obtained. In this paper we only deal with the latter problem.

�We introduce the description language p-Datalog,
we formally de�ne the set of queries described by
p-Datalog programs, and present complete and e�-
cient procedures that (i) decide whether a query is
described by a p-Datalog description. This is the al-
gorithm run by the wrapper and note that it also
�nds out what translating actions must be executed.
(ii) decide whether a query can be answered by com-
bining supported queries (the CBR problem). This
algorithm is run by the mediator. Our algorithmruns
in time non-deterministic exponential in the size of
the query and the description, a substantial improve-
ment over the algorithm described in [8], which was
non-deterministic doubly exponential.

�We study the expressive power of p-Datalog. We
reach the important result that p-Datalog can not
describe the query capabilities of certain powerful
sources. In particular, we show that there is no p-
Datalog program that can describe all conjunctive
queries over a given schema. Indeed, there is no pro-
gram that describes all boolean conjunctive queries
over the schema.

�We describe and extend RQDL, a provably more
powerful language than p-Datalog, which also keeps
the salient features of p-Datalog.

�We provide a reduction of RQDL descriptions into
p-Datalog augmented with function symbols. The
reduction has important practical and theoretical
value. From a practical point of view, it reduces
the CBR problem for RQDL to the CBR problem
for p-Datalog, thus giving a complete algorithm that
is applicable to all RQDL descriptions. (The algo-
rithm presented in [4] only works for certain classes
of RQDL descriptions.) From a theoretical point of
view, it clari�es the di�erence in expressive power
between RQDL and p-Datalog.

The next section introduces the p-Datalog descrip-
tion language. Section 3 describes the algorithm run
by the wrappers and a CBR algorithm run by the me-
diators. Section 4 discusses expressive power issues.
Section 5 introduces RQDL. Section 6 describes the
reduction of RQDL to p-Datalog with function sym-
bols and Section 7 describes the wrapper and mediator
algorithms for RQDL. Section 8 discusses the related
work. Section 9 gives conclusions and future work. For
a more formal and complete presentation of these top-
ics (and for all proofs of results in this paper) please
see [10].

2 The p-Datalog Source Description
Language

It is well known that the most popular real-life query
languages, like SPJ queries [9] and Web-based query
forms are equivalent to conjunctive queries. A Datalog
program is a natural encoding of conjunctive queries:
it \represents" all its expansions. First, we describe in-
formally a Datalog-based source description language



and demonstrate it with examples. A formal de�nition
follows in the next subsection.

In the simple case of weak information sources, the
source can be described using a set of parameterized
queries. Parameters, called tokens in this paper, spec-
ify that some constant is expected in some �xed posi-
tion in the query [2, 8, 11]. For example, query forms
found in Web sites expect constants in some of their
�elds [11]. Without loss of generality, we assume the
existence of a designated predicate ans that is the head
of all the parameterized queries of the description.
Example 2.1 Consider a bibliographic information
source that provides information about books. This
source exports a \book" predicate
b(isbn; author; title; publisher; year; pages).

The source also exports \indexes," on authors
au i(au name; isbn), publishers pub i(pub; isbn) and
titles titl i(t word; isbn). Conceptually, the tuple
(X;Y ) is in au i if the string X resembles the actual
name of an author and Y is the ISBN of a book by that
author. Similarly, (X;Y ) is in titl i if X is a word of
the actual title and Y is the ISBN of a book with word
X in the title. The following parameterized queries de-
scribe the wrapper that answers queries specifying an
author, a title or a publisher.

ans(I; A; T; P; Y; Pg) b(I; A; T; P; Y; Pg); au i($c; I)
ans(I; A; T; P; Y; Pg) b(I; A; T; P; Y; Pg); titl i($c; I)
ans(I; A; T; P; Y; Pg) b(I; A; T; P; Y; Pg); pub i($c; I)

where $c denotes a token. The query

ans(I; A; T; P; Y; Pg) b(I; A; T; P; Y; Pg); au i(0Doe0; I)

can be answered by that source, because it is derived
by the �rst parameterized query by replacing $c by the
constant 'Doe'. 2

In the previous example, the source is described by
parameterized conjunctive queries. Note that if, for
instance, the source accepts queries where values for
any combination of the three indexes are speci�ed, we
would have to write 23 = 8 parameterized conjunctive
queries. The next example uses IDB predicates (i.e.,
predicates that are de�ned using source predicates and
other IDB predicates) to describe the abilities of such
a source more succinctly. Finally, example 2.3 uses
recursive rules to describe a source that accepts an
in�nite set of query patterns.
Example 2.2 Consider the bibliographical source of
the previous example. Assume that the source can an-
swer queries that specify any combination of the three
indexes. The p-Datalog program that describes this
source is the following:
ans(I; A; T; P; Y; Pg)  b(I; A; T; P; Y; Pg);

ind1(I); ind2(I); ind3(I) (1)
ind1(I)  titl i($c; I)
ind1(I)  � (2)
ind2(I)  au i($c; I) (3)
ind2(I)  �
ind3(I)  pub i($c; I)
ind3(I)  � (4)

� denotes an empty body, i.e., �{rules have an empty
expansion. Notice that �{rules are unsafe [12]. In gen-
eral, p-Datalog rules can be unsafe but that is not a
problem under our semantics. Note also that the num-
ber of rules is only linear in the number of the available
indexes, whereas the number of possible expansions is
exponential. The query

ans(I; A; T; P; Y; Pg)  b(I; A; T; P; Y; Pg);
au i(0Doe0; I)

can be answered by that source, because it is derived
by expanding rule (1) using rules (2), (3) and (4), and
by replacing $c by the constant 'Doe'. We can eas-
ily modify the description to require that at least one
index is used. 2

In general, a p-Datalog program describes all the
queries that are expansions of an ans-rule of the pro-
gram. In particular, p-Datalog rules that have the
ans predicate in the head can be expanded into a pos-
sibly in�nite set of conjunctive queries. Among the
expansions generated, some will only refer to source
predicates2. We call these expansions terminal expan-
sions. A p-Datalog program can have unsafe terminal
expansions. We say that the p-Datalog program de-
scribes the set of conjunctive queries that are its safe
terminal expansions (formal de�nitions follow the ex-
ample).

Example 2.3 Consider again the bibliographical
source of Example 2.1. Assume that there is an ab-
stract index ab i(ab word; I) that indexes books based
on words contained in their abstracts. Consider a
source that accepts queries on books given one or more
words from their abstracts. The following p-Datalog
program can be used to describe this source.

ans(I; A; T; P; Y; Pg)  b(I; A; T; P; Y; Pg); ind(I)
ind(I)  ab i($c; I)
ind(I)  ind(I); ab i($c; I)
2

We now give the p-Datalog semantics. We assume
familiarity with Datalog, e.g. [12, 9]. Besides the con-
stant and variable sorts, we use a third disjoint set of
symbols, the set of token variables or tokens.

De�nition: A parameterized Datalog rule or p-
Datalog rule is an expression of the form p(u)  
p1(u1); : : : ; pn(un) where p; p1; p2; : : : ; pn are relation
names, and u; u1; u2; : : : ; un tuples of constants, vari-
ables and tokens of appropriate arities. A p-Datalog
program is a �nite set of p-Datalog rules. 2

Tokens are variables that have to be instantiated
to form a query. We now formalize the semantics of
p-Datalog as a source description language.

De�nition: Let P be a p-Datalog program with a
particular IDB predicate ans. The set of expansions
EP of P is the smallest set of rules such that:

2Source predicates are the EDB predicates of our
descriptions.



� each rule of P that has ans as the head predicate is
in EP ;

� if r1: p q1; : : : ; qn is in EP , r2: r  s1; : : : ; sm is in
P (assume their variables and tokens are renamed, so
that they don't have variables or tokens in common)
and a substitution � is the most general uni�er of
some qi and r then the resolvent

�p �q1; : : : �qi�1; �s1; : : : ; �sm; �qi+1; : : : ; qn

of r1 with r2 using � is in EP .
The set of terminal expansions TP of P is the subset of
all expansions e 2 EP containing only EDB predicates
in the body. The set of queries described by P is the set
of all rules �(r), where r 2 TP and � assigns arbitrary
constants to all tokens in r. The set of queries express-
ible by P is the set of all queries that are equivalent to
some query described by P . 2

The above de�nitions can easily be extended to
accommodate more than one \designated" predicates
(like ans). Uni�cation extends to tokens in a straight-
forward manner: a token can be uni�ed with another
token, yielding a token. When uni�ed to a variable,
it also yields a token. When uni�ed to a constant, it
yields the constant.

In the context of the above description semantics,
we will use the terms p-Datalog program and descrip-
tion interchangeably.

Informally, we observe that expansions are gener-
ated in a grammar-like fashion, by using Datalog rules
as productions for their head predicates and treating
IDB predicates as \nonterminals" [1]. Resolution is
a generalization of non-terminal expansion; rules of
context-free grammars can simply be thought of as
Datalog rules with 0 arguments.

Recti�cation: For deciding expressibility as well as
for solving the CBR problem the following recti�ed
form of p-Datalog rules simpli�es the algorithms. We
assume the following conditions are satis�ed:

�No variable appears twice in subgoals of the query
body or in the head of the query. Equalities be-
tween variables are made explicit through the use
of an equality predicate e(X;Y ).

�No constants or tokens appear among the ordinary3

subgoals. Every constant or token is replaced by a
unique variable that is equated to the constant or
token through an e subgoal.

�No variables appear only in an e subgoal of a query.

We treat the e subgoal not as a built-in predicate,
but as a source predicate. We call rules that obey the
above conditions recti�ed rules and the process that
transforms any rule to a recti�ed rule recti�cation. We
call the inverse procedure de-recti�cation.

In the next two sections we provide algorithms for
deciding whether a query is expressible by a descrip-
tion and for solving the CBR problem.

3We refer to the EDB and IDB relations and their facts as
ordinary, to distinguish them from facts of the e relation.

3 Query expressibility and CBR with
p-Datalog descriptions

In this section we present an algorithm for query ex-
pressibility of p-Datalog descriptions. We also give an
elegant and improved solution to the problem of an-
swering queries using an in�nite set of views [11].

Our QED (Query Expressibility Decision) algo-
rithm is an extension of the classic algorithm for de-
ciding query containment in a Datalog program that
appears in [13] (also see [12]). Our algorithm tries to
identify one expansion of the p-Datalog program that
is equivalent to our query. We next illustrate the work-
ings of the algorithm with an example.

Example 3.1 Let us revisit the bibliographic source
of previous examples. Assume that the source contains
a table on books b(isbn; author; publisher), a word in-
dex on titles, titl i(t word; isbn) and an author index
au i(au name; isbn). Also assume that the query ca-
pabilities of the source are described by the following
p-Datalog program:

ans(A;P )  b(I; A; P ); ind1(I1); ind2(I2);
e(I; I1); e(I; I2)

ind1(I)  title i(V; I); e(V; $c)
ind1(I)  �
ind2(I)  au i(V; I); e(V; $c)
ind2(I)  �

Let us consider the query Q0

ans(X;Y ) b(I;X; Y ); title i(0Zen0; I); au i(0Doe0; I)

First we produce its recti�ed equivalent Q0:

ans(X;Y ) b(I;X; Y ); title i(V1; I1); au i(V2; I2);
e(V1;

0Zen0); e(V2;
0Doe0); e(I; I1); e(I; I2)

Apparently the above query is expressible by the de-
scription. Intuitively, the QED algorithm discovers ex-
pressibility by \matching" the Datalog program rules
with the subgoals. In particular, the \matching" is
done as follows: �rst we create a DB containing a
\frozen fact" for every subgoal of the query. Frozen
facts are derived by turning the variables into unique
constants which will be denoted with a bar.

Moreover, we want to capture all the information
carried by e subgoals into the DB. If, for example, sub-
goals e(X;Y ); e(X;Z) exist in the query, we will gen-
erate \frozen" facts for all implicit equalities as well,
i.e., e(Y;X); e(Y; Z) etc. In the interests of space and
clarity, we will write e(X;Y; Z) to mean that all the
previously mentioned facts are in the DB 4. We will
use this shorthand notation in the rest of this paper.
The DB for our running example is then

b(�{; �x; �y); title i(�v1;�{1); au i(�v2;�{2); e(�{;�{1;�{2);
e(�v1; 0Zen0); e(�v2; 0Doe0)

4It is easy to see that e(Y1; : : : ; Yl) is a subset of
e(X1; : : : ; Xm) i� 8i� l; Yi 2 fX1; : : : ; Xmg.



The QED algorithm then evaluates the Datalog pro-
gram on the DB, deriving more facts for the IDB's. In
addition, it keeps track of the set of frozen facts, called
supporting set, that are used for deriving each fact.
Here is the set of facts and supporting sets derived by
a particular evaluation of the Datalog program.

< ind1(I); fg >
< ind2(I); fg >
(5) :< ans(�x; �y); fb(�{; �x; �y); e(�{;�{)g >
< ind1(�{1); ftitle i(�v1;�{1); e(�v1;

0Zen0)g >
< ind2(�{2); fau i(�v2;�{2); e(�v2; 0Doe0)g >
(6) :< ans(�x; �y); fb(�{; �x; �y); title i(�v1;�{1); e(�v1; 0Zen0);

au i(�v2;�{2); e(�v2;
0Doe0); e(�{;�{1;�{2)g >

We call <fact,supporting set> pairs extended facts.
Every ans fact that is identical to the frozen head of
the client query \corresponds" to a query that con-
tains the client query. Furthermore, we can derive
the corresponding containing query from the extended
fact by translating \frozen" facts back into subgoals.
In our running example, the two containing queries5

correspond to (5) and (6). If the supporting set is iden-
tical to the DB that we started with (modulo redun-
dant equality subgoals), then the corresponding query
is equivalent to the client query. Indeed, the corre-
sponding query to (6) is

ans(X;Y ) b(I;X; Y ); title i(0Zen0; I); au i(0Doe0; I)

which is equivalent to our given query. 2

Algorithm QED starts by mapping the subgoals of
the given query into \frozen" facts, such that every
variable maps to a unique constant, thus creating the
canonical database [13, 12] of the query, and then eval-
uates the p-Datalog program on it, trying to produce
the \frozen" head of the query. Moreover, it keeps
track of the di�erent ways to produce the same fact;
that is achieved by \annotating" each produced fact f
with its supporting facts, i.e., the facts of the canoni-
cal DB that were used in that derivation of f . The set
of supporting facts for f is the set of leaves of a proof
tree [12] for f . We can further annotate the produced
fact with the \id" of the rule used in its production,
thus generating the whole proof tree for this fact.

The algorithm keeps for each produced fact only
the maximal supporting sets. As a result, it produces
the set of expansions of the description program that
most tightly contain the given query. We call these
expansions the minimal containing queries. Notice
that there may be more than one minimal contain-
ing queries for a given query and a given description.
Moreover, notice that a minimal containing query for
Q contains the maximal number of (non-redundant)
subgoals of Q among containing queries of Q.

These are the only expansions that could be equiv-
alent to the given query. If that set is nonempty, obvi-
ously there exists a containing query forQ with respect

5The algorithm actually uses pruning to eliminate (5) from
the output.

to P . Moreover, Q is expressible by P i� one of the
minimal containing queries in the set is equivalent to
Q. Algorithm QED is presented in detail in [10].

Theorem 3.2 (Correctness) Algorithm QED termi-
nates and produces the set of minimal containing
queries of input query Q.

Using algorithm QED we can decide whether Q is ex-
pressible by P :

Lemma 3.3 Q is expressible by P i� the set of sup-
porting facts for the frozen head of Q is identical6 to
the canonical DB for Q.

Theorem 3.4 (Complexity) Algorithm QED termi-
nates in time exponential to the size of the description
and the size of the query.

Translation: Let us consider the case of a wrapper
that receives a query. It is easy to see that we could
extend Algorithm QED so that it annotates each fact
not only with its supporting set, but also with its proof
tree. The wrapper then can use the parse tree to per-
form the actual translation of the user query in source-
speci�c queries and commands, by applying the trans-
lating actions that are associated with each rule of the
description.

Mediators are faced with a di�erent problem than
wrappers: Given the descriptions for one or more
wrappers, the mediator has to answer the user query
by \issuing" only queries expressible by the wrapper
descriptions. That is the Capabilities-Based Rewrit-
ing (CBR) problem [4, 5]. As we have said in previ-
ous sections, a source description de�nes the (possibly
in�nite) set of conjunctive queries answerable by the
source. So, the CBR problem is equivalent to the prob-
lem of answering the user query using an in�nite set
of views [8].

Our CBR algorithm proceeds in two steps. The
�rst step uses Algorithm QED to generate the �nite
set of expansions. The second step uses an algorithm
for answering queries using views [6, 14] to combine
some of these expansions to answer the query. We
prove that if we can answer the query using any com-
bination of expressible queries, then we can answer it
using a combination of expansions in our �nite set.
The time complexity of our CBR algorithm is non-
deterministic exponential in the size of the query and
the description, which is a considerable improvement
over the previously known solution [8].
Theorem 3.5 (CBR) Assume we have a query Q and
a p-Datalog description P , and let fQig be the result
of applying Algorithm QED on Q and P . There exists
a rewriting Q0 of Q, such that Q0 � Q, using any
fQjjQj is expressible by Pg if and only if there exists
a rewriting Q00 , such that Q00 � Q, using only fQig.
The problem of �nding an equivalent rewriting of a
query using a �nite number of views is known to be
NP-complete in the size of the query and the view set

6After de-recti�cation of both.



[6] and there are known algorithms for solving it [6, 14].
Using the set fQig of minimal containing queries as
input to one of these algorithms, we obtain a solu-
tion to the CBR problem for p-Datalog that is non-
deterministic exponential, since jfQigj is exponential
in the size of the p-Datalog description and the user
query.

4 Expressive Power of p-Datalog

We have illustrated the use of p-Datalog programs as
a source description language. In this section, we ex-
plore some limits of its description capabilities. It
should be noted that although we focus here on the
description of conjunctive queries, similar results hold
when negation and disjunction are introduced.

Clearly, there are sets of conjunctive queries that
cannot be described by any p-Datalog description.
Moreover:

Lemma 4.1 There exist recursive sets of conjunctive
queries that are not expressible by any p-Datalog de-
scription.

However, the practical question is whether there
exist recursive sets of conjunctive queries, that corre-
spond to \real" sources, and cannot be expressed by p-
Datalog programs. We show next that some common
sources (intuitively the \powerful" ones) exhibit this
behavior. Before we prove this result, we demonstrate
the expressive abilities and limitations of p-Datalog.

Theorem 4.2 Let k be some integer, and let S be a
database schema. There exists a p-Datalog program
that describes all conjunctive queries over S with at
most k variables.

Let us now discuss the limitations of p-Datalog. It
is obvious that for every p-Datalog description pro-
gram P , the arity of the result is exactly the arity of
the ans predicate. This restriction is somewhat arti-
�cial, since we can de�ne descriptions with more that
one \answer" predicate. However, even in that case, a
given program would still bound the arities of answers.
A more serious restriction is due to the �xed number
of variables that occur in any one of the rules of the
program. In particular, even if we focus on arity-0
results, i.e., boolean queries, p-Datalog is limited.

Theorem 4.3 Let the database schema S have a rela-
tion of arity at least two. For every p-Datalog descrip-
tion P over S, there exists a boolean query Q over S,
such that Q is not expressible by P . (So, in particular,
there is no p-Datalog description that could describe
a source that can answer all conjunctive queries, even
if we �x the arity of the answer.)

The theorem points out a rather serious limitation of
p-Datalog descriptions.

5 The RQDL Description Language

Given the limitations of p-Datalog for the description
of powerful information sources, we are proposing the

use of a more powerful query description language.
RQDL (Relational Query Description Language) is a
Datalog-based rule language used for the description
of query capabilities. It was �rst proposed in [4] and
used for describing query capabilities of information
sources. [4] shows its advantages over Datalog when it
is used for descriptions that are not schema-speci�c.

In this paper we extend RQDL and prove that it al-
lows us to describe large sets of queries. For example,
we prove that RQDL, unlike p-Datalog, can describe
the set of all conjunctive queries. Furthermore, we
reduce RQDL descriptions to terminating p-Datalog
programs with function symbols. Consequently, the
decision on whether a given conjunctive query is ex-
pressed by an RQDL description is reduced to deciding
expressibility of the query by the resulting p-Datalog
program. That allows us to give a complete solution
to the CBR problem for RQDL.

To support schema independent descriptions,
RQDL allows the use of predicate tokens in place of
the relation names. Furthermore, to allow tables of ar-
bitrary arity and column names, RQDL provides spe-
cial variables called vector variables, or simply vectors,
that match with sets of relation attributes that appear
in a query. Vectors can \carry" arbitrarily large sets
of attributes. It is this property that eventually allows
the description of large, interesting sets of conjunctive
queries (like the set of all conjunctive queries).

In the rest of this paper we will be using named
attributes in our conjunctive queries. For example,
consider the relation book with schema book(title; id).
Instead of writing

ans() book(X;Z); e(X; 0Data0)

we will write

ans() book(title : X; id : Z); e(X; 0Data0)

Every predicate will then have a set of named at-
tributes (and not a list of attributes). The connection
of this scheme to SQL syntax is evident.

Example 5.1 illustrates RQDL's ability to describe
source capabilities without referring to a speci�c
schema.

Example 5.1 Consider a source that accepts queries
that refer to exactly one relation and pose exactly one
selection condition over the source schema.

ans() $r(
!

V ); item(
!

V ; A;X0); e(X0; $c)

The above RQDL description7 describes, among oth-
ers, the query

ans() b(f1 : X; f2 : Z); e(X; 0Data0)

because, intuitively, we can map $r to relation b,
!

V to
the set of attribute-variable pairs ff1 : X; f2 : Zg,
X0 to X, and $c to 'Data'. The metapredicate

item(
!

V ; A;X0) declares that the variable X0 maps to

7Notice that both the RQDL descriptions and the queries are
recti�ed



any one of the variables in the set of attribute-variable

pairs that
!

V is mapped to, i.e., X0 maps to one of
the variables of the subgoal $r. Moreover, the vari-
able A maps to the attribute name of the variable

that X0 maps to in
!

V . No condition is placed on A
and hence X0 can be either X or Z. We call the pro-
cess described above, that maps an RQDL rule into a
conjunctive query, an instantiation of the RQDL rule.

RQDL descriptions do not have to be completely
schema independent. For example, let us assume that
we can put a selection condition only on the title at-
tribute of the relation. Then we modify the above
RQDL description as follows:

ans() $r(
!

V ); item(
!

V ; title;X0); e(X 0; $c)
The replacement of A by title forces the selection con-
dition to refer to the title attribute only. 2

Example 5.2 The following RQDL program de-
scribes all boolean conjunctive queries over any
schema.

ans()  cond(
!

V )

cond(
!

V ) $p(
!

V1); cond(
!

V2); union(
!

V ;
!

V1;
!

V2)

cond(
!

V ) item(
!

V ; P;X); e(X; $c); cond(
!

V )

cond(
!

V ) item(
!

V ; P1; X1); item(
!

V ; P2; X2);

e(X1; X2); cond(
!

V )

cond(
!

V ) $p(
!

V )

The metapredicate union(
!

V ;
!

V1;
!

V2) declares that
!

V is
mapped to the union of the sets of attribute-variable

pairs that
!

V1 and
!

V2 are mapped to.
Given any recti�ed conjunctive query, the descrip-

tion above describes it, i.e., for any conjunctive query
Q, there exists an expansion of the rules that can be
instantiated to Q. 2

The semantics of RQDL are an extension of the se-
mantics of p-Datalog described in Section 2. Infor-
mally, we say that a conjunctive query Q is described
by an RQDL description P if Q is an instantiated ex-
pansion of P . We say that Q is expressible by P , if
there exists Q0 described by P , such that Q � Q0.

The next section describes the reduction of RQDL
descriptions to p-Datalog programs with function sym-
bols. Section 7 proceeds to give algorithms for query
expressibility by RQDL description and for the CBR
problem for RQDL descriptions.

6 Reducing RQDL to p-Datalog with
function symbols

Deciding whether a query is expressible by an RQDL
description requires \matching" the RQDL description
with the query. This is a challenging problem because
vectors have to match with non-atomic entities, i.e.,
sets of variables, hence making matching much harder.
A brute force approach, such as the one proposed by

[4], where vectors actually match with sets during the
derivation, quickly leads to serious problems. In par-
ticular, the brute force approach breaks down in the
presence of unsafe rules that have vectors in the head.

In this section we present an algorithm that avoids
these problems by reducing the problem of query ex-
pressibility by RQDL descriptions to the problem of
query expressibility by p-Datalog with function sym-
bols, i.e., we reduce the RQDL description into a corre-
sponding description in p-Datalog with function sym-
bols. The reduction is based on the idea that ev-
ery database DB can be reduced into an equivalent
database DB0 such that the attribute names and rela-
tion names of DB appear in the data (and not the
schema) of DB0. We call DB0 a standard schema
database. We then rewrite the query so that it refers to
the schema of DB0 (i.e., the standard schema) and we
also rewrite the description into a p-Datalog descrip-
tion with function symbols which refers to the standard
schema as well.

Reduction to standard schema: We conceptually
reduce the original database into a standard schema
database where the relation names and the attribute
names appear as data. We illustrate the reduction
through an example.

Example 6.1 Consider the following database DB
with schema b(au ; id) and f(subj ; id).

b
au id

'Doe' 1

'Sax' 2

f
subj id

'Law' 1

'Art' 2

The standard schema consists of two relations, a tu-
ple relation t(rel; tuple id) and an attribute relation
a(tuple id ; attr; value). For this example, the corre-
sponding standard schema database DB0 is

t
rel tuple id

b b('Doe',1)

b b('Sax',2)

f f('Law',1)

f f('Art',2)

a
tuple id attr value

b('Doe',1) au 'Doe'

b('Doe',1) id 1

b('Sax',2) au 'Sax'

b('Sax',2) id 2

f('Law',1) subj 'Law'

f('Law',1) id 1

f('Art',2) subj 'Art'

f('Art',2) id 2

Notice above how we invented one tuple id for each
tuple of the original database. 2

Reduction of CQ queries to standard schema
queries: The RQDL expressibility algorithm �rst re-
duces a given conjunctive query Q over some database
DB into a corresponding query Q0 over the standard
schema database DB0. The reduction is correct in the
sense that the result of asking query Q0 on DB0 is



equivalent, modulo tuple-id naming, to the reduction
into standard schema of the result of Q on DB.

To illustrate the query reduction, let us consider a
couple of examples. We �rst consider a boolean query
Q over the schema of Example 6.1.

ans() b(au : X; id : S1); f(subj : A; id : S2);
e(S1; S2); e(A; 0Art0)

Query Q is reduced into the following query Q0:

t(ans ; ans()) t(b; B); t(f; F ); a(B; id; S1); e(S1; S2);
a(F; id; S2); a(F; subj; A); e(A;

0Art0)

Notice that for every ordinary subgoal we introduce a
t subgoal and invent a tuple id. For every attribute we
introduce an a subgoal. The tuple id for the result rela-
tion ans is simply ans() because the result relation has
no attributes. When the query head has attributes, a
single conjunctive query is reduced to a non-recursive
Datalog program. For example, consider the follow-
ing query that returns the authors and IDs of books if
their subject is 'Art'.

ans(au : X; id : S1) b(au : X; id : S1); e(S1; S2);
f(subj : A; id : S2); e(A; 0Art0)

This query is reduced to the following program Q0

where the �rst rule de�nes the t part of the standard
schema answer and the last two rules describe the a
part.

t(ans ; ans(X ; S1 ))  t(b; B); t(f; F ); a(B; id; S1);
a(F; id; S2); a(B; au; X);
e(S1; S2); a(F; subj; A);
e(A; 0Art0)

a(ans(X ; S1 ); au; X)  t(b; B); t(f; F ); a(B; id; S1);
a(F; id; S2); a(B; au; X);
e(S1; S2); a(F; subj; A);
e(A; 0Art0)

a(ans(X ; S1 ); id; S1) t(b; B); t(f; F ); a(B; id; S1);
a(F; id; S2); a(B; au; X);
e(S1; S2); a(F; subj; A);
e(A; 0Art0)

It is easy to see that under obvious constraints we can
go from the standard schema query to the \original"
query.

Reduction of RQDL programs to standard
schema Datalog programs8: Based on the ideas
presented in the previous paragraphs, we will reduce
RQDL descriptions into p-Datalog descriptions that do
not use higher order features such as metapredicates
and vectors. In particular, we \reduce" vectors to tu-
ple identi�ers. Intuitively, if a vector matches with the
arguments of a subgoal, then the tuple identi�er asso-
ciated with this subgoal is enough for �nding all the
attribute-variable pairs that the vector will match to.

Otherwise, if a vector
!

V is the result of a union of two

other vectors
!

V1 and
!

V2, then we associate with it a

8With function symbols.

new constructed tuple id, the function u(T1; T2) where

T1 and T2 are the tuple id's that correspond to
!

V1 and
!

V2. The reduction carefully produces a program which
terminates despite the use of the u function. We will
illustrate the reduction through an example.
Example 6.2 The description of Example 5.2 de-
scribes all boolean conjunctive queries. It reduces
into the following p-Datalog description (with function
symbols):

t(ans ; ans()) cond (T )
cond (T ) t($p; T1); cond(T2); v(T; T1; T2)
cond (T ) a(T 0; P;X); e(X; $c); cond(T );e(T 0;T );
cond (T ) a(T1; P1; X1); a(T2; P2; X2); e(X1;X2);

cond (T ); e(T; T1); e(T; T2)
cond (T ) t($p; T )

The reduction of each rule is independent from the re-
duction of other rules. In the reduction of the �rst rule,
notice that the vector variable has been \replaced" by
the variable T which matches with a tuple id. In the

second rule, notice that we reduced
!

V to T , which is
\produced" by the predicate v, given T1 and T2. v
constructs a new \valid" tuple id of a restricted form,
that has associated with it all the attributes associ-
ated with T1 or T2. The role of v is to simulate the
union that it replaces, by not allowing generation of
arbitrary u terms. Assuming that there is a total or-
der for the tuple ids of the standard schema database,
v(T; T1; T2) creates a u term in which all tuple ids
appear in sorted order, and none are repeated. In
particular, v(T; u(t2; u(t3; t4)); u(t3; t5)) will bind T to
u(t2; u(t3; u(t4; t5))). Each description has to include
the rules that de�ne v. These rules are given in [10].

Finally, the description has to include the \stan-
dard" rules of Fig. 2, that make sure that all attributes
of tuples with ids T1 and T2 are also attributes of tu-
ples with id T , constructed from T1; T2.

a(T;A;X) a(T1; A;X); v(T; T1; T2)
a(T;A;X) a(T2; A;X); v(T; T1; T2)

Figure 2: Default rules for generation of attr tuples
In the reduction of the third rule of the descrip-

tion, notice that the metapredicate item(V; P;X) is
reduced to the predicate a(T; P;X). 2

Theorem 6.3 Let P be an RQDL description and P 0

its reduction in p-Datalog with functions. Let alsoDB
be a canonical standard schema database of a query
Q. Then P 0 applied on DB terminates.
The next section explains the semantics of p-Datalog
with functions, and shows how to solve the CBR prob-
lem for RQDL using the algorithms developed for p-
Datalog in Section 3.

7 Expressibility and CBR with RQDL
descriptions

Let us start by clarifying the semantics of p-Datalog
with functions. We will denote p-Datalog with func-



tions with p-Datalogf . The set of expressible queries of
a p-Datalogf program is de�ned the same way as for a
p-Datalog program (see Section 2), with one di�erence:
there are two \designated" predicates, the predicates
tuple and attr.

Let us note that the transformation of a conjunctive
query to refer to the standard schema results in a set
of standard schema queries with the same body. The
following theorem states that the reduction described
in the previous section is correct:

Theorem 7.1 Let us consider a query Q over some
schema and an RQDL description P . Also let Q0 =
fQig be the set of standard schema queries that is
the reduction of Q and P 0 be the standard schema
reduction of P . Then Q is expressible by P if and
only if each Qi is expressible by P 0, i.e., i� set Q0 is
expressible by P 0.

Because of Theorems 6.3 and 7.1, we can use Algo-
rithm QED to answer the expressibility question in
RQDL. The idea is to generate all possible extended
facts for tuple and attr and then, as in Section 3, check
whether (i) the necessary \frozen" tuple and attr facts
are produced and (ii) their corresponding queries are
equivalent to the Qi's.

Example 7.2 Consider the query

Q : ans(a : X) books(au : X; titl : Y )

and the description

ans(a : X) $r(au : X; titl : Y )
ans(b : Y )  $r(au : X; titl : Y )

The standard schema canonical DB is
t(books; t0); a(t1; au; �x); a(t2; titl; �y); e(t0; t1; t2)

The reduction of the description (after recti�cation) is

t(ans ; ans(X))  t($r; T ); a(T1; au;X); a(T2; titl; Y );
e(T; T1); e(T; T2)

a(ans(X); a;X)  t($r; T ); a(T1; au;X); a(T2; titl; Y );
e(T; T1); e(T; T2)

t(ans ; ans(Y ))  t($r; T ); a(T1; au;X); a(T2; titl; Y );
e(T; T1); e(T; T2)

a(ans(Y ); b; Y )  t($r; T ); a(T1; au;X); a(T2; titl; Y );
e(T; T1); e(T; T2)

Notice that we didn't include the rules of Figure 2
or the rules for predicate v in the reduced descrip-
tion, since the original description didn't contain any
metapredicates.

After we run Algorithm QED on the canonical DB,
the following extended facts are produced:

(7) < t(ans ; ans(x)); ft(books; t0); a(t1; au; x);
a(t2; titl; y); e(t0; t1; t2)g >

(8) < a(ans(x); a; x); ft(books; t0); a(t1; au; x);
a(t2; titl; y); e(t0; t1; t2)g >

< t(ans ; ans(y)); ft(books; t0); a(t1; au; x);
a(t2; titl; y); e(t0; t1; t2)g >

< a(ans(y); b; y); ft(books; t0); a(t1; au; x);
a(t2; titl; y); e(t0; t1; t2)g >

The output of the algorithm includes the exact two
conjunctive queries (the corresponding queries to the
extended facts (7) and (8)) that are the reduction of
Q. Q is therefore expressible by our description, by
Theorem 7.1. 2

The CBR problem for RQDL: Before attempt-
ing to solve the Capabilities-Based Rewriting prob-
lem for CBR, let us make the following observa-
tions: Algorithm QED produces tuple and attr ex-
tended facts with maximal supporting sets. If there
exists an extended fact < attr(t; attr name; x); St >
in the result, then there also exists an extended fact
< tuple(r; t); St > for some table r.

We solve the CBR problem for a given query in two
steps:

�We generate the set of relevant described queries
from the output of the Algorithm QED, by \glue-
ing" together the tuple and attr subgoals that have
the same supporting set. In other words, we cre-
ate the corresponding standard schema queries for
the extended facts and then do the inverse reduction
on the sets of those that have the same body (thus
ending up with some queries on the original schema).
These are the relevant queries of the description with
respect to the given query.

�Given a query (over some schema) and a number of
relevant described queries over the same schema, we
can apply an answering queries using views algorithm
[14, 6], where the views are the relevant described
queries.

8 Related Work

The di�erent and limited query capabilities of infor-
mation sources are an important problem for integra-
tion systems. In this section we discuss the approaches
taken by various systems and we also discuss some the-
oretical work in this area.

[2] suggested a language for describing query ca-
pabilities. The expressive power of the language is
equivalent to Datalog. [8] proposed a Datalog with to-
kens for the same purpose. These works are focused
on showing how we can compute a query Q given a ca-
pabilities description P . We already mentioned that
we improved upon the result of [8] for the problem of
answering a query using an in�nite number of views.

RQDL was proposed by [4] to allow capabilities
descriptions that are not schema speci�c. The In-
formation Manifold [11] focuses on the capabilities
description of sources found on the Web; hence it
does not consider recursion. The expressive power of
its capabilities-describing mechanism is less than p-
Datalog.

The DISCO system [15] describes the capabilities of
the sources using context-free grammars appropriately
augmented with actions. DISCO enumerates plans ini-
tially ignoring limited wrapper capabilities. It then
checks the queries that appear in the plans against



the wrapper grammars and rejects the plans contain-
ing unsupported queries. There is an ongoing DISCO
e�ort to develop more sophisticated algorithms.

The Garlic system [5, 16] combines capabilities-
based rewriting with cost-based optimization. The as-
sumption is made that all the variables mentioned in a
query are always made available by the wrapper. This
compromises the expressiveness of the description lan-
guage but greatly simpli�es the proposed algorithm.
It is also interesting that capabilities descriptions are
given in terms of plans supported by the wrappers.

Finally, RQDL's handling of constructed tuple ids
is based on a use of Skolem functions that is close to
the ideas in [17, 18]

9 Conclusions and Future Work

We discuss the problems of (i) describing the query
capabilities of sources and (ii) using the descriptions
for source wrapping and mediation. We �rst consider
a Datalog variant, called p-Datalog, for describing the
set of queries accepted by a wrapper. We also provide
algorithms for solving (i) the expressibility and (ii) the
CBR problems.

We then study the expressive power of p-Datalog.
We reach the important result that p-Datalog can
not describe the query capabilities of certain pow-
erful sources. A direct consequence of our result is
that p-Datalog cannot model a fully-
edged relational
DBMS.

We subsequently describe and extend RQDL, which
is a provably more expressive language than p-Datalog.
We provide a reduction of RQDL descriptions into p-
Datalog augmented with function symbols. Using this
reduction we discuss complete algorithms for solving
the expressibility and the CBR problems.

We have focused exclusively on conjunctive queries.
We plan to extend our work to non-conjunctive
queries, i.e., queries involving aggregates and nega-
tion. Combining our CBR algorithm with cost-
based query optimization also presents interesting
challenges.
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