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Abstract

We address the problem of query rewriting for TSL, a language for querying semistructured data. We

develop and present an algorithm that, given a semistructured query q and a set of semistructured

views V, �nds rewriting queries, i.e., queries that access the views and produce the same result as q.

Our algorithm is based on appropriately generalizing containment mappings, the chase, and uni�cation

{ techniques that were developed for structured, relational data. We also develop an algorithm for

equivalence checking of TSL queries.

We show that the algorithm is sound and complete for TSL, i.e., it always �nds every TSL rewriting

query of q, and we discuss its complexity. We extend the rewriting algorithm to use available structural

constraints (such as DTDs) to �nd more opportunities for query rewriting.

We currently incorporate the algorithm in the TSIMMIS system.

1 Introduction

Recently, many semistructured data models, query and view de�nition languages have been proposed [20, 36,

8, 3, 38, 41, 1, 16] and are used for querying and management of Web data [16, 3, 38], biological databases

[51], integration of heterogeneous data [20, 33], etc. The Harvest Information Discovery and Access system [5]

and the Lotus Notes messaging and groupware system [34] are two important precursors to the \schema-less"

approach to data modeling.

Semistructured models are necessary because of the 
exible nature of non-database information systems.

In particular, semistructured models are useful in the context of Web-based sources; Web data very often

have irregular, partial or only implicit structure. The semistructured model XML [6] is emerging as the new

standard for the modeling and exchange of Web data.

As it has been the case in the relational world, rewriting of semistructured queries using views is a

fundamental query processing and optimization tool for semistructured queries. In this section we �rst
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present an abstract version of the rewriting problem and consequently we describe its applications, including

a rewriter we build for the TSIMMIS system [20].

The Rewriting Problem At a su�cient level of abstraction the rewriting problem faced by the applica-

tions listed below is as follows: Given a query q accessing a semistructured database1 D and a set of views

V = fV1; : : : ; Vng over D, �nd rewriting queries, where a rewriting query of q given V is a query that accesses

at least one view of V and returns the same result as q.2 If the rewriting query uses views only (i.e., it does

not access directly the database D) then it is called a total rewriting query.

Applications of the Rewriting Algorithm Semistructured models have been used by repositories that

store semistructured data [36, 8] and by mediators that integrate heterogeneous information [56, 26, 42, 16,

37].

The importance of rewriting algorithms in mediators and repositories of relational systems, as described

below, is a witness to the many applications they'll have in the semistructured world.

1. Relational query rewriting algorithms are used for answering queries using materialized views [28, 27,

49] and the query cache [25].

2. Views have been used in mediator systems to describe the source contents [29]. Furthermore, the

di�erent and limited query capabilities of the sources are often described by \views" where the constants

are parameterized. For example, the parameterized view

SELECT * FROM R WHERE R.A=$X

where R resides at source S, declares that S can answer queries that pick all attributes of R and have

R.A be bound to a constant. Then a query over the source data has to be rewritten to use correctly the

contents and capabilities of the sources, i.e., to correctly use the available views [47, 30, 55, 24, 43, 14].

Indeed, in that case the query has to access only views and hence we need a total rewriting query.

The above points highlight the importance of rewriting algorithms in relational databases and mediators.

We believe that rewriting algorithms will be equally important for semistructured databases and mediators.

Use of the Rewriting Algorithm in the TSIMMIS System: Capability-Based Rewriting and

Cached Queries A TSIMMIS mediator integrates semistructured data frommultiple heterogeneous infor-

mation sources into a virtual view Vm | not to be confused with the views used by the rewriting algorithm.

The general integration architecture is shown in Figure 1.

For example, a bibliographic mediator may combine the data of multiple bibliographic sources into a

single \union" view. At run time, given a user query, the mediator decomposes it into multiple queries which

refer to the source data. However, these bibliographic sources are accessible through interfaces that have

1The database may be distributed over multiple sites.

2We formalize the concept of \same result" and the de�nition of a rewriting query in Section 3.
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varying query capabilities; the queries emitted by the mediator must conform to these capabilities. Let us

further illustrate this issue using an example.

The user query requests all \SIGMOD 97" publications. Then the mediator will decompose the user

query into multiple \SIGMOD 97" queries where each one of them is source-speci�c, i.e., it refers to one

source only (see Figure 2). To do the decomposition correctly and e�ciently the mediator must �gure out,

using the capabilities of the underlying sources, how to extract the necessary information from the sources.

This decision is made in the Capability-Based Rewriter (CBR) module. In our running example, if one source

only supports queries on \year", the CBR will decide that a query that retrieves the \97" publications will

be sent to this source. The rest, i.e., �ltering for \SIGMOD", will be done at the mediator.

After such decisions are made, and the mediator formulates a query plan that respects the query capa-

bilities of the sources, each query is sent to a wrapper, where it is translated into the native query language

of the corresponding source. Then the individual query results, namely the \SIGMOD 97" publications each

source contains, are collected, the information about each of them is appropriately consolidated into one

entity by the mediator and the combined result is presented to the user.
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The TSIMMIS system uses parametrized views to describe query capabilities. The mediator employs a

simpli�ed version of our rewriting algorithm to accomplish its task [33]. We are in the process of implementing

the fully general query rewriting algorithm presented in this paper in the TSIMMIS system. Note that the

existence of parameters in the views does not seriously a�ect the complexity of the problem [47, 55]. For

presentation clarity we work in this paper with plain semistructured views - as opposed to parametrized

ones.

Use of the Rewriting Algorithm in semistructured repositories: Our algorithm can be used to

answer queries using materialized views and cached queries of repositories for semistructured data, such as

Lore [36]. For example, if a cached query result contains all \SIGMOD" publications, our rewriting algorithm

can create a rewriting query where \SIGMOD 97" publications are obtained by �ltering the cached query

for \1997" publications. Notice that the rewriting algorithm only needs the query and the cached query

statements - it does not need to examine the source data. The cached queries play in this case the role of

views.3

Materialized views and cached queries were the main original motivation for relational query rewriting

[57, 11] and we believe they are as important for semistructured databases. Indeed our algorithm is applicable

to repositories of Web data stored using the XML [6] data model, which is very similar to our data model.

The query language | TSL, for Tree Speci�cation Language | that we are working with is very similar to

recent proposals for an XML query language [13].

Web site management and structured Web search: Some recent work [16] has applied concepts

from information integration to the task of building complex Web sites that serve information derived from

multiple data sources. In this scenario, a Web site is a declaratively-de�ned site graph over the semistructured

data graph of the contents of the information sources. If we only have access to the information through the

Web site(s), queries asked over the data graph need to be rewritten as queries over the Web site structure

and contents. The Web site de�nitions are just view de�nitions over the data graph; the necessary query

rewriting can thus be handled by our algorithm.

Data Model and Query and View De�nition Language In TSIMMIS we model semistructured data

using the OEM data model [42, 46], which is a labeled graph model where the nodes are uniquely identi�ed

by object-id's. The data models used by other semistructured information systems and languages, such

as Strudel [16], Lore [36], and UnQL [8], can be easily reduced to OEM. To express queries and views we

have implemented and use TSL, a logic-based language that allows creation of semantic object-id's using

Skolem functions [40, 35]. That feature gives TSL strong restructuring capabilities: a query result can be

3Of course, given the autonomy of the bibliographic sources and the mediator, the rewriting query may deliver a stale result

to the user. Nevertheless this result may still be very useful to the user. For example, assuming that the sources do not delete

information, the cached result contains correct answers to the user's query, and it can be quickly delivered. Then, while the user

inspects the cached query, the system can collect the current result from the sources [50]. Furthermore, if an update-propagation

system is in place it can account for the \deltas" between the cache and the sources [23, 58, 2]. In this paper we will not deal

any further with these consistency issues. Instead we focus on the rewriting algorithm.
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an arbitrary answer tree. For the majority of Web-based sources and for most of the practical applications

described above, the restructuring capabilities of TSL are su�ciently powerful.

The resemblance of TSL to Datalog [52] facilitates the presentation of similarities and di�erences between

the rewriting of relational conjunctive queries and semistructured TSL queries. Highlighting these similarities

is one of the goals of this paper.

We will describe TSL in more detail in Section 2. Besides its restructuring capabilities, note that TSL

allows querying and copying arbitrarily deeply-nested, schema-less data, and supports label variables that

enable querying the \structure" of the data.

Algorithm The proposed algorithm solves the rewriting problem by outputting a �nite set Q of rewriting

queries, i.e., queries equivalent to q that have at least one condition referring to one of the views. Furthermore,

for every rewriting query qr that does not appear in Q there is a q0r 2 Q such that every view that is used

by q0r is also used by qr. Under any reasonable cost model, q0r will be as or more e�cient (if it uses strictly

fewer views) than qr and hence we do not include qr in Q. From now on, we will say that the algorithm

returns all rewriting queries, though we actually mean that it returns a set of rewriting queries Q with the

above properties.

The algorithm operates in two steps: First it �nds candidate rewriting queries. Then it retains the

candidate rewriting queries which are equivalent to the original query. During the �rst phase, the algorithm

uses a generalization of containment mappings [10] from the views to the original query q in order to narrow

the space of candidate queries. Furthermore, the algorithm uses the chase technique [53] to deal with the

key dependencies that hold because of object identity.

Testing the equivalence of the candidate rewriting query with the original query is also accomplished

in two steps. First, the algorithm \composes" the rewriting query and the views to obtain an \expanded"

query q0r that is equivalent to the rewriting query and does not refer to the views any more. Then q0r is

tested for equivalence with the original query. To do the testing, we develop conditions for the equivalence

of TSL queries that extend the conditions for equivalence of unions of conjunctive queries [10, 48] to queries

with path expressions.

We extend the rewriting algorithm to make use of structural constraints on the source data. In particular,

we consider constraints that can easily be expressed by standards such as the XML DTDs or the newly

proposed XML-Data. The existence of such constraints allows us �nd rewritings in cases where, in the

absence of constraints, the algorithm would fail.

Lessons and Results Our rewriting algorithm is based on extending containment mappings, the chase,

and uni�cation from the relational into the semistructured world. In doing so we bene�t from a vast body

of knowledge on relational query rewriting. Furthermore, we obtain insight on how to interface with the

optimizer of the TSIMMIS system (see Figure 2).

The reader may wonder whether, given a reduction of semistructured data to relations, such as the

one presented in [39], the conjunctive TSL rewriting problem can be fully reduced to the well-understood

relational conjunctive query rewriting problem. The answer is negative because TSL queries can not be
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Figure 3: Example OEM objects

reduced to conjunctive relational queries. TSL queries and views are actually reducible to Datalog with

function symbols and with a limited form of recursion. The function symbols are introduced to allow TSL to

construct new objects through the use of semantic object-ids.4 The recursion is necessary to copy arbitrarily

deeply nested objects from the source to the query result [39]; this copying is an important feature for the

integration of semistructured sources. Another factor that makes rewriting of semistructured queries harder

than that of relational queries is of course the lack of schema that necessitates the use of label variables in

the queries and the views. Finally, the existence of structural constraints gives more opportunities for query

rewriting. We identi�ed two situations where we can infer dependencies from structural constraints, and we

extended the rewriting algorithm to use these dependencies.

Contents The following section introduces the OEM data model and our query language for semistructured

data. Section 3 states the rewriting problem, describes our algorithm and describes mappings and query

composition in TSL. Section 4 presents an algorithm for equivalence testing of TSL queries. Section 5 proves

the correctness of our rewriting algorithm for TSL queries and views and discusses the complexity of the

rewriting problem. Finally, Section 6 discusses related work and Section 7 o�ers some concluding remarks

and discusses future work.

2 The OEM Data Model and the TSL Query Language

In the OEM data model, the data are represented as a rooted graph with labeled nodes (also called objects)

that have unique object-id's. Figure 3 illustrates some bibliographic data represented in OEM. Atomic

objects have an atomic value (e.g., SIGMOD) while the value of the other objects (called set objects) is the

4Other semistructured languages, such as StruQL [17] and XML-QL [13], have recently adopted the same approach.
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set of objects (not just object-ids) pointed to by the outgoing edges. Notice that this de�nition is inherently

recursive, since the value of an object is part of the object: the value of a set object o is essentially the OEM

subgraph rooted o.5 The roots of the graph are illustrated as top level objects. They are the starting points

for querying the sources. Note that we ignore objects that are not reachable from the roots of the graph.

The object-id's are typically atomic data. In the general case they are terms from the Herbrand universe

composed from

� a set of atomic data, which includes but is not necessarily con�ned to, the atomic data appearing as

labels and values and

� an arbitrary set of uninterpreted function symbols. For example, f(&10, ashish) is a possible object-

id, and the function symbol f \de�nes" the term.

Object-id's may be symbols with no particular meaning. In other cases object-id's may have a semantic

meaning. For example, if the object is a Web page then it is typically a good idea to have the URL be the

object-id. Furthermore, meaningful term object-id's can facilitate the integration tasks.

Even though OEM can model data that can naturally be represented as an arbitrary graph, we expect

that in many applications, especially those dealing with XML data, data will instead be naturally represented

as a directed acyclic graph, or a tree.

A TSL query is a rule that de�nes the query result using minimal model semantics. A rule consists of

a head followed by a :- and a body, in the style of Datalog [53]. Intuitively, the head describes the result

objects in the answer graph, whereas the body describes one or more conditions that must be satis�ed by

the source objects. The head and the body conditions are based on object patterns of the form <object-id

label value>. The value �eld can be either a term (variable, atomic constant, or function symbol followed

by a term list) or a set value pattern which contains zero or more object patterns. Terms that appear in

an object-id �eld in the head of a TSL query must be unique. This restriction forces TSL to produce fresh

object-ids for the objects in the query result. It also forces TSL to produce answer trees instead of arbitrary

graphs as query results. We discuss removing this restriction (and the resulting language) in Section 6.

Semantics and power of TSL: We illustrate the semantics with the following example.

(Q1) <fem(P) female f<f(X) Y Z>g> :- <P person f<G gender female> <X Y Z>g>@db

The semantics of the above query are

if there is a tuple of bindings p, g, x, y and z for the variables P, G, X, Y, and Z such that

the data source db contains a person top-level (root) object identi�ed by p,

the p object has a gender subobject with value female and object id g, and

the p object has a y subobject with value z and object id x

%the object p may also have sub-objects other than the g and the x

then the query result has

5Excluding o itself.
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a female object, with object-id fem(p),

the fem(p) object has a y subobject with value z and object id f(x).

%the object fem(p) may have subobjects other than y

%because the result of another rule may \fuse" more subobjects into the object fem(p)

Note that z could be a subgraph of the data in db. The answer to query (Q1) is an object with a new,

unique object-id and the structure denoted by the query head. In general, a TSL query can construct answer

objects that are tree restructurings of source data, hence we refer to the result of a TSL query as an answer

tree. Because of the copying semantics of TSL, (e.g., z above could be a subgraph of the data), the query

result can actually be a graph: a constructed tree with (perhaps cyclic) subgraphs potentially hanging o�

some branches. Note �nally that a TSL query may refer to more than one data source, e.g., one condition

may refer to db1 and a second one to db2.

Formally, for an OEM database D, let PD be the set of all subgraphs6 of D, O be the set of all object-ids

in D, and C be the set of all labels and atomic values. Let VO be the set of all object-id variables7 and

VC be the set of all other (label and value) variables, with VO \ VC = ;. Let V = VO [ VC be the set of

all variables. The meaning of the query body is the set of assignments � : V ! O [ C [ PD that satisfy

all conditions in the body. Each assignment maps object-id variables to O, label variables to C and value

variables to C [ PD.

The meaning of the query head is as follows. We create and label the new nodes of the answer tree, and

make the top-level object pattern of the query the root of the answer tree. In particular, for each object

pattern <f(X1; : : : ; Xm) L V>. in the query head, and for each assignment � above, create a new object

with object-id f(�(X1); : : : ; �(Xm)), label �(L) and value �(V ). If instead of V , the object pattern above

has fo1 : : : ong, the value of the created object is f�(o1); : : : �(on)g.

Notice that when two assignments produce the same term as the object-id of an object, the same object

is \returned", and the values of the two objects are \fused".

TSL can be translated to Datalog with function symbols and limited recursion over a �xed schema. It can

be shown to be less expressive than StruQL and thus less expressive than linear datalog [17]. TSL queries

can be computed in polylogarithmic parallel time with polynomially many processors (i.e., TSL � QNC).

In the rest of this paper, we only consider positive TSL queries without cyclic object patterns in the

body conditions (i.e., without object patterns that look for cycles in the OEM database). To simplify the

presentation, we focus on normal form queries, de�ned next. Every TSL query can be easily converted into

normal form and hence the focus on normal form does not limit the power of the language.

De�nition: Normal Form TSL Queries are the TSL queries in whose body all set-valued value �elds

contain at most one object pattern. Additionally, a normal form query with just one condition in its body

is called a single path query. 2

The query (Q1) can be easily transformed into the following normal form query:

6Remember that the value of a set object is essentially the OEM subgraph rooted at that object.

7Object-id variables are variables appearing in the object-id �eld of object patterns.
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(Q2) <fem(P) female f<f(X) Y Z>g> :- <P person f<G gender female>g>@db

AND <P person f<X Y Z>g>@db

Safe TSL queries A TSL query is safe if every variable appearing in the query head also appears in the

query body. Thus, the same simple syntactic test that is used by [53] to de�ne safety of conjunctive queries

can be used to de�ne safety in TSL. In the remainder of this paper we are only discussing safe TSL queries.

TSL views A TSL view is de�ned simply by a TSL query. Each view de�nes its own OEM database,

with its own space of unique object-id's. That can easily be accomplished for example by qualifying the

object-id's by the name of the view.

It is important to point out that TSL has features essential for querying and integrating semistructured

data, namely the ability to query and copy arbitrarily nested schema-less data, the ability to restructure such

data through the use of semantic object-id's, and the ability to query the \structure" of the data through

the use of label variables.

3 TSL Query Rewriting

Given a TSL query Q referring to an OEM database D and conjunctive views V = V1; : : : ; Vn, also referring

to D, the rewriting problem is to �nd a TSL query Q0 such that (i) Q0 refers to at least one of V1; : : : ; Vn and

(ii) for all OEM databases D, the result of Q is equivalent to the result of Q0. (See de�nition of equivalence

below.)

We call Q0 the rewriting query. In general, there may be more than one rewriting queries. We start our

discussion with a straightforward de�nition of equivalence of OEM databases.

Equivalence of two OEM databases D1 and D2 Two OEM databases D1 andD2 are equivalent if they

are identical, i.e., they have the same set of object-id's and for every object-id x the two objects identi�ed

by x in D1 and D2 (i) have the same label l (ii) both of them have an atomic value or both of them have a

set value (iii) if they are atomic objects they have the same atomic value v and (iv) if they are set objects

they have identical sets of subobjects.

Apparently the above de�nition carries to equivalence of query results and views. It is possible to de�ne

OEM database equivalence up to object-id renaming. We discuss this issue in Section 6.

3.1 Rewriting of Queries with Single Path Condition

We informally present an algorithm which decides whether a query Q having one single path condition can

be rewritten using a single view V that has one or more path conditions. This algorithm, though a special

case of the complete rewriting algorithm (see Section 3.5), illustrates the basic steps of our technique. The

general algorithm is proven sound and complete for TSL in Section 5.
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Step 1: Find Candidate Queries We �rst �nd mappings from the view to the condition and then we

develop a candidate query for each mapping. Note that for the special case of queries with a single

path condition there may be at most one mapping and consequently at most one candidate query.

Step 1A: Find Mappings Find, if it exists, the mapping from the body of V to the body of Q. Our

mappings extend [10] to cope with object nesting and are formally de�ned in Section 3.2. If a

mapping exists, then we can be sure that, if there is a variable binding that satis�es the body of Q,

then there is also a binding that satis�es the body of V . Hence mappings are a necessary condition

for the relevance of the view to the query condition. Furthermore, the mapping indicates which

conditions of Q do not appear in V ; these conditions will have to be checked by the rewriting

query. Notice that there can be at most one mapping from the body of V to the one single path

condition in the body of Q. However, in the general case (Section 3.5) we may have multiple

mappings.

Example 3.1 Consider the view (V1), which restructures the person objects of db into objects

that \group" their labels in property subobjects and their values in value subobjects.8 Notice

that (V1) \loses" information in the sense that it only shows the labels and values that appear in

db but the label-value correspondence has disappeared. Queries such as (Q3), that ask whether

the value leland stanford appears in the database, can be answered using the view (V1) because

they do not need information on the label-value correspondence. The example shows how our

algorithm �nds a rewriting query for (Q3).

(V1) <g(P0) person f<prop(P0,Y0) property Y0> <h(X0) value Z0>g> :-

<P0 person f<X0 Y0 Z0>g>@db

(Q3) <f(P) stanford yes> :- <P person f<X Y leland stanford>g>@db

The only mapping from the body of (V1) to the body of (Q3) is (M2). Intuitively, (M2) indicates

that the condition Z' = leland stanford must be enforced on the view in order to get objects

relevant to the query.

(M2) [P0 7! P, X0 7! X, Y0 7! Y, Z0 7! leland stanford]

2

Step 1B: Generate Candidate Queries Apply the mapping to V , resulting in an \instantiation"

of V , namely V 0. Then build the rewriting query Q0 as follows: The head of Q0 is identical to the

head of Q. The body of Q0 is the head of V 0.

Example 3.1 continued The only candidate rewriting query (Q4) is created from the head of

(Q3) and the result of applying (M2) to the head of (V1).

(Q4) <f(P) stanford yes> :- <g(P) person f<prop(P,Y) property Y>

<h(X) value leland stanford>g>

8The examples try to illustrate the technical issues concisely and clearly, and sometimes can appear arti�cial.
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Step 2: Test Correctness of Candidate Query Check whether the composition of V and Q0, denoted

by V �Q0 is equivalent to Q. Step 2 is accomplished in two sub-steps:

Step 2A: Computation of Composition The composition V �Q0 of the rewriting query with the

view is computed. We compute V � Q0 using a query-view composition algorithm based on

extending resolution and uni�cation for semistructured data. This algorithm in essence takes

exponential time in the size of the query. The composition algorithm is illustrated using an

example below, and is formally presented in Section 3.7.

Step 2B: Testing Equivalence of V �Q0 with Q The general idea of equivalence testing is to �nd

(1) a mapping that maps V � Q0 into Q, i.e., (i) it maps the head of V � Q0 into the head of Q

and every condition of V � Q0 is mapped into a condition of Q and (2) a mapping that maps Q

into V � Q0. Note that the V � Q0 and Q have to be in normal form in order to test equivalence

as described above.9

Example 3.1 continued We test whether (Q4) is a valid rewriting query by �rst transforming it

into the normal form (Q4)norm, then composing it with (V1), and �nally comparing the resulting query

(V1)�(Q4)norm to (Q3). Indeed, (V1)�(Q4)norm is equivalent to (Q3) because (i) the mapping (M3)

maps (V1)�(Q4)norm to (Q3) and (ii) the mapping (M4) maps (Q3) to (V1)�(Q4)norm).

(Q4)norm <f(P) stanford yes> :- <g(P) person f<prop(P,Y) property Y>g>

AND <g(P) person f<h(X) value leland stanford>g>

(V1)�(Q4)norm <f(P) stanford yes> :- <P person f<X0 Y Z0>g>

AND <P person f<X00 Y00 leland stanford>g>

(M3) [P 7! P, X0 7! X, Y 7! Y, Z0 7! leland stanford, X00 7! X, Y00 7! Y]

(M4) [P 7! P, X 7! X00, Y 7! Y00]

Set Mappings The rewriting query may have to apply a \subobject membership" condition on a value

variable. To handle this case, our mappings are extended to map a variable to a set pattern.

Example 3.2 Consider the query (Q5) and the view (V1). It is clear that Z0 must bind to set values that

contain a <Z last stanford> subobject. The algorithm captures this intuition by developing the mapping

(M5) from the body of (V1) to the body of (Q5). Notice that Z0 is mapped to f<Z last stanford>g>.

(Q5) <f(P) stanford yes> :- <P person f<X Y f<Z last stanford>g>g>@db

(M5) [P' 7! P, X' 7! X, Y' 7! Y, Z' 7! f<Z last stanford>g ]

(Q6) <f(P) stanford yes> :- <g(P) person f<prop(P,Y) property Y>

<h(X) value f<Z last stanford>g>g>@V1

(Q6) is the candidate query created from the head of (Q5) and the result of applying (M5) to the head of

(V1). 2

9The general equivalence testing algorithm is actually more intricate, because of the existence of object-id's. For a full

description of the equivalence testing algorithm for TSL see Section 4.
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Mappings are necessary but not su�cient for the existence of a rewriting query as the following example

illustrates. That is why a containment test is needed, as in Step 2B of the algorithm.

Example 3.3 Consider the query (Q7) and the view (V1).

(Q7) <f(P) stanford yes> :- <P person f<X name f<Z last stanford>g>g>@db

Intuitively, there is no rewriting query for (Q7) because the view \loses" the correspondence between

labels and values. Hence, if the database contains a name attribute and a value v containing the <last

stanford> subobject it is impossible for the rewriting query to discover whether there is a name object with

value v or name and v appear in di�erent objects of the database. Notice that despite the non-existence of

a rewriting query there is the mapping (M6). Based on this mapping the algorithm derives the candidate

rewriting query (Q8). However, the composition of the candidate rewriting query with the view results in

the query (Q9) which is not equivalent to the original query (Q7). Notice that name is the label of the object

X0 while <last stanford> is a subobject of another object X00.

(M6) [P0 7! P, X0 7! X, Y0 7! name, Z0 7! f<Z last stanford>g ]

(Q8) <f(P) stanford yes> :-<g(P) person f<prop(P,Y) property name>

<h(X) value f<Z last stanford>g>g>@V1

(Q9) <f(P) stanford yes> :- <P person f<X0 name Z0>g>@db

AND <P person f<X00 Y00 f<Z last stanford>g>g>@db

2

In the following subsection, we formally de�ne mappings and describe an algorithm for mapping com-

position. Subsection 3.3 extends the chase for set variables, which as will see is necessary to deal with the

key dependency on object-id. Subsection 3.4 discusses how the algorithm can exploit structural constraints,

such as DTDs, that are known about source data. Subsections 3.5 and 3.6 present a general algorithm for

query rewriting.

3.2 Mappings

In this section, we formally de�ne mappings and mapping composition.

De�nition: A Mapping is a set of structures of the form variable 7! rhs that transforms a TSL object

pattern (or a conjunction of TSL object patterns or a TSL rule) to another. Rhs can be a term or a set of

TSL object patterns fpattern1; : : : ; patternng. The right hand sides cannot contain variables that appear in

the left hand sides of 7!. 2

De�nition: Valid Application of a Mapping on an OEM Object Pattern The result of applying a

mapping on an OEM object pattern is a pattern where every variable which appears in the left hand side

is replaced by the corresponding right hand side. The mapping is applicable to the object pattern if (i) the

resulting pattern has valid OEM syntax, i.e., set patterns do not appear in object-id or label positions, (ii)

is compatible with key dependencies imposed by the object-id's. 2
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The composition of two mappings �1 and �2, denoted by �1 ��2, is derived by applying �2 to the variables

and set patterns on the right hand side of �1, deriving �
0, and subsequently concatenating �2 and �0.

De�nition: Mapping Composition The composition �1 � �2 is a mapping � consisting of (i) all V 7! rhs

structures of �2 and (ii) for every V 7! rhs structure of �1, � includes a structure of the form V 7! rhs0 and

rhs0 = �2(rhs). 2

The complete algorithm for discovering mappings from a set of single path conditions to another set of

single path conditions appears in Appendix B.

3.3 Extending the chase for set variables

Object identity introduces a functional dependency in OEM (key dependency from the object id to the label

and value). Moreover, structural constraints introduce functional dependencies, as we will see in the next

subsection. The rewriting algorithm uses the chase technique [53] to deal with these dependencies. The

technique has to be extended for the case of variables that can bind to sets. In what follows, we motivate

the need for and present our extension to the chase, presented for the case of key dependencies on object-id.

The extension applies in general to any functional dependency with value variables in the right hand side.

Example 3.4 Consider (Q13) and (Q10) below.

(Q10) <f(P) stan student V> :- <P person f<U university stanford>g>@db

AND <P person V>@db

(Q10) is equivalent to (Q13), since V is a set variable. However, our algorithm, as described so far, will

erroneously not discover a rewriting query because there is no mapping from the condition of (Q13) to the

second condition of (Q10). Using the key dependency on object-id, we can infer that V is a set variable and

transform (Q10) to (Q13). Notice how the \set" variable is transformed into a set pattern. 2

Recall that TSL queries are not allowed to contain cyclic object patterns. This is necessary for the described

simple extension to the chase to terminate.

Object-id dependency chase extension Let o1, o2 be object patterns of a query q with the same term

in the object-id �eld.

� If o1 and o2 have L1; V1 and L2; V2 in their label and value �eld respectively, then we replace all

occurrences of L2; V2 in q with L1; V1 respectively.

� If o1 has object patterns foi; : : : ; ojg in its value �eld and o2 has V2, then replace all occurrences of V2

in q with f<X Y Z >g, where X;Y; Z are variables not appearing in q.

� If o1 has foi; : : : ; ojg in its value �eld and o2 has fck; : : : ; cmg, replace the value �elds of both o1 and

o2 with foi; : : : ; oj; ck; : : : ; cmg.

� If one of o1; o2 have a constant in one of the �elds, and the other has a variable, replace all occurrences

of that variable in q with the constant.
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� If both o1 and o2 have constants in one of the �elds, then, if the constants are di�erent, halt with an

error (this query cannot be chased to an equivalent query satisfying the object-id key dependency). If

the constants are the same, do nothing for this �eld.

� If o2 is identical to o1, drop o2 from q.

In order to \chase" functional dependencies that do not involve value variables, we can use the \regular"

chase rule.

3.4 Structural constraints and query rewriting

Semistructured data are often accompanied by constraints that partially de�ne the structure of objects.

Such structural constraints can be expressed as a DTD, a DataGuide [22] or an XML-Data \schema". For

instance, we could know that the data in source db in the previous examples conform to the following DTD:10

<!ELEMENT person (name, phone, address, affiliation*)>

<!ELEMENT name (last, first, middle?, alias?)>

<!ELEMENT alias (last, first)>

<!ELEMENT address CDATA>

<!ELEMENT phone CDATA>

<!ELEMENT last CDATA>

<!ELEMENT first CDATA>

<!ELEMENT middle CDATA>

This DTD describes in a 
exible way the structure of the source data. For example, it speci�es that

objects labeled person have exactly one subobject each with labels name, phone and address, and zero or

more affiliation subobjects. It also speci�es that subobjects phone and address are atomic. Given such

a DTD, we can infer information in the form of dependencies between labels or object-ids, that will allow

the rewriting algorithm to discover rewritings in cases where it would have otherwise failed.

Example 3.5 Given the above DTD, we can infer automatically that in db the only subobject of a person

object with a last subobject is a name object. Therefore, if we look at (Q9) in Example 3.3, Y00 has to

be name. Moreover, there exists a \labeled" functional dependency from object-id P with label person to

object-id X with label name, since according to the DTD a person object has exactly one name subobject.

This implies that X00 has to be X0 (by application of the chase rule). Therefore (Q9) can be rewritten as

(Q11) <f(P) stanford yes> :- <P person f<X0 name Z0>g>@db

AND <P person f<X0 name f<Z last stanford>g>g>@db

Finally, we chase the dependency on P using the chase extension described previously to derive (Q12). It

should be obvious that (Q12) is equivalent to (Q7), and therefore a valid rewriting query.

10Since OEM does not support order, we ignore the order in the DTD description as well.
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(Q12) <f(P) stanford yes> :- <P person f<X0 name f<Z last stanford> <A B C>g>g>@db

2

As illustrated in the previous example, we identify two cases where information can easily be inferred

from a structural description, such as a DTD, or an XML-Data \schema":

� (label inference) Given a \path expression" of labels a.?.c, if the structural constraint speci�es that

the only subobject of an a object with a c subobject is a b subobject, we can infer that ? = b.

� (functional dependency) If the structural constraint speci�es that objects labeled a have only one

subobject labeled b, we can infer the functional dependency between object-id variables Xa ! Yb.

The rewriting algorithm takes advantage of this information by performing label inference and the chase

on the query, the views and the candidate queries, again as illustrated in Example 3.5. It is straightforward

to show that applying label inference and the chase always terminates in time polynomial to the length of

the queries and the constraints description. Moreover, it is easy to show that label inference and the chase

do not a�ect the soundness of the rewriting algorithm.

In the presence of structural constraints, there is clearly more opportunity for query simpli�cation and

query rewriting. This is the subject of future work.

3.5 General case of query rewriting

We now treat the general case of the query rewriting problem, with any number of views in V and any number

of conditions in the body of the query Q. We apply the chase technique to take functional dependencies into

account. For the sake of simplicity, the following example uses a view set with only one view. The method

used generalizes trivially to view sets of any size; the algorithm described in subsection 3.6 covers the general

case.

Example 3.6 Consider the following view (V7). Notice that the semantic object-ids of property and value

objects retain information about the object that originally had that property and value. Then consider query

(Q13).

(V7) <view(P0) person f<prop(X0) property Y0> <val(X0) value Z0>g> :-

<P0 person f<X0 Y0 Z0>g>

(Q13) <f(P) stan student f<X Y Z>g> :- <P person f<U university stanford>g>@db

AND <P person f<X Y Z>g>@db

Intuitively, (Q13) can be answered using only (V7) as follows: First use (V7) to �nd the P's that have

a \university" subobject with value \stanford." The mapping (M8) from the body of (V7) to the �rst

condition of (Q13) implies that this is possible. Then for every P that quali�es, pick all its subobjects <X Y

Z>. Mapping (M9) from the body of (V7) to the second condition of (Q13) implies that this is also possible.

Then, the head of the rewriting query (Q14) is the head of (Q13) and the body of (Q14) is the conjunction

of �8(head (V 7)) and �9(head (V 7)).

15



(M8) �8 = [P0 7! P, X0 7! U, Y0 7! university, Z0 7! stanford]

(M9) �9 = [P0 7! P, X0 7! X, Y0 7! Y, Z0 7! Z]

(Q14) <f(P) stan student f<X Y Z>g> :-

<view(P) person f<prop(X) property Y> <val(X) value Z>g>@V7 AND

<view(P) person f<prop(U) property university> <val(U) value stanford>g>@V7

Let us now check whether (Q14) is a valid rewriting query. That means transforming (Q14) into normal

form and checking whether (Q15)=(V7)�(Q14)norm is equivalent to (Q13).

(Q15) <f(P) stan student f<X Y Z>g> :-

<P person f<X Y Z0>g>@db AND <P person f<X Y0 Z>g>@db AND

<P person f<U university Z00>g>@db AND <P person f<U Y00 stanford>g>@db

Notice that unless we make use of the key dependency Oid ! LabelValue there is no mapping from the body

of the query (Q13) to the body of (Q15). By chasing (Q15), we infer that Y � Y0, Z � Z0, Y00 � university,

and Z00 � stanford. 2

3.6 Rewriting Algorithm

The following algorithm generates a rewriting query if one exists. The query bodies are converted into

normal form and label inference and the chase are applied before we apply the algorithm.

Input:A TSL query Q with k single path conditions in the body

and a set of TSL views V = fV1; : : : ; Vng.

Output: A set of rewriting queries.

Step 1A: Find the mappings �ij from the body of each Vi 2 V to the body of Q

using the mapping discovery algorithm of Appendix B.

Step 1B: construct candidate rewriting queries Q0

� head (Q0) is head(Q)

� body(Q0) is any conjunction of l conditions, 1 � l � k,

where each condition is either a view \instantiation" �ij (head (Vi)) or a condition of Q.

If the resulting query is unsafe, then continue with next candidate

perform label inference and chase Q0

Step 2: test whether each constructed Q0 is correct. Speci�cally,

construct the composition of Q0 with V1; : : : ; Vn Q0(V1; : : : ; Vn) (see Section 3.7)

perform label inference and chase Q0(V1; : : : ; Vn)

if Q0(V1; : : : ; Vn) is equivalent to Q (see Section 4) include Q0 in the output;

else continue with the next candidate.

Notice that the above algorithm constructs candidate queries (in Step 1B) basically at random. The

e�ciency of the algorithm can be substantially improved with the use of simple heuristics. A particularly

e�ective heuristic is the following:
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� keep track of which conditions of the query body each instantiated view �ij (head (Vi)) maps into. These

are the conditions that are \covered" by �ij (head (Vi)).

� only construct candidate queries Q0 such that the views and conditions in the body of Q0 \cover" all

the conditions in the body of Q.

A variation of the above heuristic is implemented in the capability-based rewriting module of the TSIM-

MIS system [33].

The next subsection formally de�nes the composition of TSL queries. Composition of TSL queries is

performed in Step 2 of the rewriting algorithm presented in Section 3.6.

3.7 Composition of TSL queries

The composition of TSL queries Q and V is a query Qc = V � Q, such that for any OEM database D,

Qc(D) = Q(V (D)). Query composition is accomplished by resolving each condition in the body of Q with

the head of V in all possible ways, using uni�cation (which generalizes [21, 53]). A uni�er in TSL is de�ned

as follows:

De�nition: [40] Uni�er from a single path condition e1 to a general condition e2. � is a uni�er

from e1 to e2 if the pattern �(e1) is included in the pattern �(e2), as described by the following de�nition.

2

De�nition: Object pattern inclusion A single path pattern e1 is included in a pattern e2 if and only if

(a) e1 has the same object-id and label �elds as e2

(b) if the value �eld of e1 is of the form fe01g

then the value �eld of e2 is of the form fe12,: : :,e
m
2 g and

there is a pattern e
j
2; j = 1; : : : ;m such that e01 is included in e

j
2.

else if the value �eld of e1 is of the form fg

then the value �eld of e2 is of the form fe12,: : :,e
m
2 g (m may be 0)

else (values are atomic) e1 and e2 have the same value �eld.

2

Query composition is easily generalized to multiple queries V1; : : : ; Vn. Let us look at the following

detailed example:

Example 3.7 Let us consider the following query

(Q16) <f(P) ans f<g(D) m V>g> :- <P p f<A l V>g> AND <Q q f<D m V>g>

and two views

(V10) <h(A0,B) p f<i(A0) l V0> <j(B) Y `abc'>g> :-

<X label1 f<A0 label2 V0> <B Y W> <C label3 T>g>

(V11) <k(F) L E> :- <G l f<F L E>g>
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There exist two uni�ers for the �rst condition of (Q16) and the head of (V10):

�1 = [P 7! h(A0; B); A 7! A0; V 7! V0]

�2 = [P 7! h(A0; B); A 7! B; Y 7! l; V 7! `abc0]

There exists one uni�er for the �rst condition of (Q16) and the head of (V11):

�3 = [P 7! k(F); L 7! p; E 7! f<A l V>g]

That means the result of resolving the �rst condition of (Q16) with the views gives 3 TSL queries:

(Q17) <f(h(A0,B)) ans f<g(D) m V0>g> :-

<X label1 f<A0 label2 V0> <B Y W> <C label3 T>g>

AND <Q q f<D m V0>g>

(Q18) <f(h(A0,B)) ans f<g(D) m `abc'>g> :-

<X label1 f<A0 label2 V0> <B l W> <C label3 T>g>

AND <Q q f<D m `abc'>g>

(Q19) <k(F) ans f<g(D) m V>g> :- <G l f<F p f<A l V>g>g> AND <Q q f<D m V>g>

For the second condition of each one of (Q17,Q18,Q19), there exists one uni�er with (V11):

�4 = [Q 7! k(F); L 7! q; E 7! f<D m V'>g]

�5 = [Q 7! k(F); L 7! q; E 7! f<D m `abc'>g]

�6 = [Q 7! k(F); L 7! q; E 7! f<D m V>g]

respectively. Therefore, Qc consists of 3 TSL rules:

(Q20) <f(h(A0,B)) ans f<g(D) m V0>g> :-

<X label1 f<A0 label2 V0> <B Y W> <C label3 T>g>

AND <G l f<F q f<D m V0>g>g>

(Q21) <f(h(A0,B)) ans f<g(D) m `abc'>g> :-

<X label1 f<A0 label2 V0> <B l W> <C label3 T>g>

AND <G l f<F q f<D m `abc'>g>g>

(Q22) <k(F) ans f<g(D) m V>g> :- <G l f<F p f<A l V>g>g> AND <G l f<F q f<D m V>g>g>

2

Notice that in TSL there are multiplemgus or most general uni�ers. The practical consequence is that the

result of V �Q, where V and Q are single-rule conjunctive TSL queries, could be a union of conjunctive TSL

queries. In other words, Qc could consist of several rules. In particular, Qc could consist of an exponential

number of rules (of at most polynomial length.) This observation gives us the following theorem.

Theorem 3.8 (Composition Complexity) Query composition in TSL is in EXPTIME.

Notice that the order of resolving query conditions with view heads does not matter. It is obvious that query

composition \implements" view dereferencing: it transforms a query that refers to the object patterns in a

view head to a query that refers to the \source" objects that the view is de�ned over.

For the complete uni�cation algorithm see Appendix A.
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4 Equivalence of TSL queries

Two queries Q1; Q2 are equivalent if and only if for all OEM databases D, their results Q1(D) and Q2(D)

are equivalent. In this section, we will develop a compile-time test of equivalence of TSL queries, based on an

extension of containment mappings [10]. We assume that the chase has already been applied to the queries.

The problem of TSL equivalence is complicated because of the restructuring capabilities of TSL: query

heads construct arbitrary answer graphs and di�erent rules can contribute di�erent parts of the same answer

graph. Hence we need to make sure that all the components of the result graph are the same. The required

decomposition is in the same spirit as normal form decomposition for query bodies (see Section 2), but it

has to go one step further by decomposing a TSL query into �ner-grain rules. In Appendix C we show that

normal form decomposition does not allow us to determine equivalence of TSL queries.

We decompose a TSL query into graph component queries that correspond to the components of the

result graph: edges, nodes and root, i.e., top-level objects.11 Every TSL rule Q is decomposed into three

types of �ner grain rules:

� one top rule corresponding to the top level condition of the head of Q (this query corresponds to the

root of the OEM graph constructed by the head of Q)

� as many member rules as there are object-subobject relationships in the head of Q (these queries

correspond to the edges of the OEM graph constructed by the head of Q, and specify their start and

end objects) and

� one object type rules as object conditions in the query head of Q (corresponding to the objects of the

OEM graph constructed by the head of Q and describing their labels and values).

The decomposition is illustrated by the following example. The reduced rules are essentially TSL: set values

are allowed in the object \predicates". Indeed it is the possibility of sets including objects of unbounded

depth that prevents conjunctive TSL from being reducible to non-recursive Datalog. Note that member and

top \predicates" depart from TSL syntax to emphasize the connection to Datalog [39].

Example 4.1 Consider the following query:

(Q23) <l(X) l f<f(Y) m f<n(Z) n V>g>g> :- <X a f<Y b f<Z c V>g>g>

Its decomposition in graph component queries is as follows:

top(l(X)) :- <X a f<Y b f<Z c V>g>g>

member(l(X),f(Y)) :- <X a f<Y b f<Z c V>g>g>

member(f(Y),n(Z)) :- <X a f<Y b f<Z c V>g>g>

<l(X) l fg> :- <X a f<Y b f<Z c V>g>g>

<f(Y) m fg> :- <X a f<Y b f<Z c V>g>g>

<n(Z) n V> :- <X a f<Y b f<Z c V>g>g>

11Recall that OEM graphs are rooted.

19



2

The condition for equivalence of the resulting graph component queries is easily derived:

Theorem 4.2 Two sets S1 = fP1; : : : ; Png and S2 = fT1; : : : ; Tmg of graph component queries are equiv-

alent if and only if for each Pi there exists a mapping to it from some Tj and for each Ti there exists a

mapping to it from some Pj.

The proof of Theorem 4.2 is a straightforward generalization of the containment theorem for unions of

relational conjunctive queries. Moreover, the following theorem holds:

Theorem 4.3 (TSL query equivalence) Two TSL queries are equivalent if and only if their decomposi-

tions into graph component queries are equivalent.

From the above, it is straightforward to derive a simple equivalence test for TSL queries.

5 Soundness, Completeness, and Complexity

In the previous section we have shown that query rewriting can be done in two steps. In the �rst step, we

�nd mappings from the body of the views to the body of the query and we use \instantiated" view heads

to construct candidate rewriting queries. In the second step we check the correctness of the rewriting. The

second step establishes the soundness of our rewriting algorithm. We will now prove the completeness of

the algorithm, i.e., we will show that it always �nds a rewriting query if one exists. For this proof, we

assume that there are no structural constraints, and therefore no functional dependencies except the key

dependencies on object-id. In the presence of arbitrary functional dependencies, such as the ones that can

be inferred from structural constraints, it is easy to show that our rewriting algorithm is not complete (see

[15] for a simple counterexample for the case of relational query rewriting).

To prove the completeness of the algorithm, we �rst observe that if there is no mapping from a view

body to the query body, then the view is not \relevant" to the query.

Lemma 5.1 Let Q and V be TSL queries. There is a rewriting query Q0 of Q using view V only if there is

a mapping from the body of V to the body of Q.

Moreover, we can bound both the number of conditions and the variables appearing in the rewriting.

Lemma 5.2 Let Q be a TSL query and V be a set of TSL views. If there exists a rewriting of Q using V,

then there exists such a rewriting consisting of at most k view heads, where k is the number of single path

conditions in the body of the query.12

Lemma 5.3 If there exists a rewriting of query Q using the set of views V, then there exists a rewriting of

Q using V that doesn't use variables that don't exist in Q.

12Notice that, since view heads do not have to be single path, the number of single paths in the rewriting can be greater than

k.
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The above lemmata demonstrate that the theory of relational query rewriting, presented in [28], can be

generalized for TSL. Notice that Lemmata 5.2 and 5.3 hold in the presence of the key dependencies on object-

id. Intuitively, our algorithm is complete because no additional functional dependencies can be inferred from

the object-id key dependencies. By using disjoint sets of object-id and other variables, a condition such as

<X Y f<Y Z W>g>, which implies the extra functional dependency from X to Z and W, is disallowed.

The following lemma justi�es why completeness is not compromised by only constructing rewriting queries

Q0 that have a head identical to the head of the query Q. Notice, this is an issue that is particular to

semistructured and nested models while it is trivial in the relational model (Q0 must have a head identical,

up to variable renaming, to the head of Q.)

Lemma 5.4 If there exists a valid rewriting query Q00 such that head(Q00) is not the same as head(Q), then

there exists a valid rewriting query Q0 such that head(Q0) = head(Q).

To see that Lemma 5.4 holds, notice that if there exists such a query Q00, then we can always apply our

rewriting algorithm to it, to derive a query Q0 equivalent to Q00 (and therefore to Q) whose head is identical

to the head of Q.

Theorem 5.5 The rewriting algorithm proposed in subsection 3.6 is sound and complete.

Proof: (Sketch) The algorithm is obviously sound, because its last step is a correctness test. It is complete

because of the above lemmata, because the query composition algorithm is correct [39], and �nally because

the rewriting algorithm exhaustively searches the space of rewritings de�ned by the above lemmata. 2

5.1 Complexity of MSL rewriting

The algorithm described in Section 3.5 takes exponential time. First, Step 1 can generate an exponential

in the size of the view bodies number of mappings. Then Step 2 can generate an exponential number of

candidate rewritings. Finally the construction of Q0(V1; : : : ; Vn) using a generic query composition algorithm,

i.e., an algorithm which can compose two arbitrary queries Q1 and Q2, takes exponential time.13

6 Related work

TSL is derived from the Mediator Speci�cation Language (MSL), discussed in [41, 40]. MSL is a more

general language that allows arbitrary restructurings of source data. Because of its additional restructuring

power, MSL (as well as StruQL, which has the same restructuring capabilities) is not closed under query

composition. This signi�cantly reduces the applicability of the rewriting algorithm.

The problem of query rewriting for conjunctive relational views is discussed in [28, 45, 30, 54, 55, 15, 14]

and for recursive queries (but not recursive views) in [14]. It is also related to the problems of query

containment and query equivalence [10, 12].

To the best of our knowledge, there is no work on the problem of rewriting semistructured queries using

views. The only relevant work we are aware of is [19] on the problem of query containment in StruQL (a

13See also Section 3.7.
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semistructured language similar to TSL and MSL). This work does not deal with the restructuring capabilities

of the StruQL language, whereas our work deals with the restructuring capabilities of TSL. On the other

hand, [19] deals with queries and views containing \wildcards" and regular path expressions, whereas TSL

does not support regular path expressions.

The relational rewriting work cannot o�er a straightforward solution to the TSL rewriting problem

because nonrecursive TSL queries reduce to (a restricted form of) recursive14 Datalog programs, as described

in detail in [39], hence making inapplicable the conjunctive query rewriting results. The special form of the

restricted recursion in TSL leads to decidability and complexity results which are known not to hold for

general recursive Datalog programs [14].

Since our data model supports object oriented features, our work is also related to the problem of object

oriented query rewriting. Previous work on the problem of containment and equivalence of object oriented

queries [9, 31] relies on the existence of a static class hierarchy.15 Work on the containment of queries on

complex objects has been presented most recently in [32]. However, [32] considers the problem of query

containment and equivalence, while we are solving the query rewriting problem. Furthermore, the language

used in [32] is typed { as opposed to TSL which is semistructured.

Finally, there has been some recent work in using structural information about a semistructured source

(such as graph schemas [7] or DTDs) in query processing [18, 44]. Abiteboul and Vianu in [4] address the

problem of containment for regular path conditions in the presence of path constraints.

Isomorphism In the OEM data model every node of the semistructured graph has an object identity |

unlike [8] and [32]. Furthermore, we require that the original and the rewritten queries compute identical

graphs (i.e., same OID's) as opposed to graphs equivalent under bisimulation [8] or bisimulation's close

relative, isomorphism. Following the isomorphism approach two OEM databases D1 and D2 would be

equivalent if for every object x1 of D1 we can �nd an object x2 of D2 such that x1 and x2 have the same

label, same value if atomic, or equivalent (i.e. isomorphic) sets of subobjects if they have set values. The

isomorphism approach is based on the fact that typically we do not care for the object-id symbol; we only

care for the object subobject relationships the object-id's create. For example, the URL names are not

important; it is the hypertext structure created by the links that is important.

From the point of view of the rewriting algorithm it is not important whether the rewriting query Q0

produces results identical to the original query Q or it produces isomorphic results. The reason is that we

conjecture that if there is no rewriting query Q0 with a result identical to Q then there is no rewriting query

Q00 returning a result isomorphic to Q.

14A restricted form of recursion is needed to deal with the lack of schema and the unbounded nesting of the semistructured

objects.

15Notice the di�erence with the unbounded nesting depth of the semistructured objects.
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7 Conclusions and Future Work

We presented an algorithm that given a semistructured query q expressed in conjunctive TSL and a set of

semistructured views V, �nds rewriting queries, i.e., queries that access the views and are equivalent to q.

Our algorithm is based on appropriately generalizing containment mappings, the chase, and uni�cation. The

�rst step uses containment mappings to produce candidate rewriting queries. The second step composes

each candidate rewriting query with the views and checks whether the composition is equivalent to the

original query. Though the algorithm is similar to the one for the rewriting of conjunctive queries there are

many challenges stemming from the semistructured nature of the data and the queries. For example, the

composition of the rewriting query and the views is harder (from a complexity point of view) because of the

lack of schema and of the restructuring capabilities of TSL views. Moreover, we extended the algorithm to

use structural constraints to discover rewritings in cases where, in the absence of constraints, there would

be no rewritings.

We currently incorporate our algorithm into the TSIMMIS system for use as a capability based rewriter.

We will soon adapt its interfaces to the TSIMMIS system so that it will be able to also serve as a rewriter of

queries using cached views. Furthermore, we are working on extensions to the algorithm so that it can handle

extensions to TSL, such as regular path expressions in the query body. Notice that in the presence of regular

path expressions, the opportunities (and di�culties) presented by the existence of structural constraints such

as DTDs are more signi�cant.

We are also currently developing rewriting algorithms that, instead of generating equivalent rewriting

queries, will generate maximally contained rewriting queries, in the spirit of [15, 14].
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A Query composition

See Figure 4

B Mappings

The following algorithm returns the mapping, if there is one, of a single path condition c1 to a single path

condition c2.

INPUT Two single path conditions c1 and c2

OUTPUT A mapping �, if there is one, such that �(c1) � c2

METHOD Run the function � = map1(c1; c2; [])

function map1(c1; c2; �
i)

apply �i to c1:oid and c2:oid

%Mappings of oid's and labels are not described in detail

because they are well-known

if there is no mapping �oid of c1:oid to c2:oid

return no mapping

else apply �i � �oid on c1:label and c2:label

if there is no mapping �label from c1:label to c2:label

return no mapping

else apply �i � �oid � �label on +c1:value and c2:value

if c1:value and c2:value are terms and they have a mapping �value

return �i � �oid � �label � �value

else if c2:value is a set of the form fr1; : : : ; rmg and c1:value is a variable then

if there is already a mapping of c1:value to a set fs1; : : : ; sng

return �i � �oid � �label � [c1:value 7! fs1; : : : ; sn; r1; : : : ; rmg]

else

return �i � �oid � �label � [c1:value 7! fr1; : : : ; rmg]

else return no mapping

Next, we describe a brute force algorithm for discovering the mappings from a set of single path conditions

to another set of single path conditions.

INPUT Two sets fc11; : : : ; c
1
ng and fc

2
1; : : : ; c

2
mg of single path conditions

OUTPUT All mappings � such that for every condition c1i ; i = 1; : : : ; n

there is a c2j ; j = 1; : : : ;m such that �(c1i ) � c2j

METHOD Run the function mapmany(fc11; : : : ; c
1
ng; fc

2
1; : : : ; c

2
mg)

function mapmany(fc11; : : : ; c
1
ng; fc

2
1; : : : ; c

2
mg)
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for every function f from f1; : : : ; ng to f1; : : : ;mg do

�0  []

for i = 1; : : : ; n

if there is not a �i = map1(c1i ; c
2
f(i); �i�1)

exit inner loop

if thetan was found, add �n to mappings

return

Notice that there may be up to mn mappings between the two sets. The algorithm described above takes

no more than exponential time.

C Normal form decomposition is not enough for TSL equivalence

We try to come up with a simpler syntactic condition for equivalence of two single-rule queries Q1 and Q2,

based on the idea of the normal form for TSL queries. We will attempt to derive an equivalence condition

as follows: we will normalize the query heads (and bodies) of Q1 and Q2 and we will attempt to show a

modi�ed version of Theorem 4.2.

Conjecture C.1 Two sets S1 = fP1; : : : ; Png and S2 = fT1; : : : ; Tmg of normal-form queries (heads and

bodies are normalized) are equivalent if and only if for each Pi there exists a mapping to it from some Tj

and for each Ti there exists a mapping to it from some Pj.

The following example shows that this is not correct; we conclude that normalizing the query heads does

not allow us to come up with a simple syntactic characterization of query equivalence.

Example C.2 Consider the following queries; each one consists of two rules, and in order to make our point

clear we have let all the queries have the same body. Notice that the �rst rule of query (Q24) creates an

l object for every a object and an n0 object for every c object, while the second rule creates an l0 object

for every a and an n object for every c. Then, notice that query (Q25), though it has di�erent single path

conditions from query (Q24), creates exactly the same result. The intuition is that the di�erent query heads

create di�erent \parts" of the same answer graph for (Q24) and (Q25).

(Q24) <l(X) l f<f(Y) m f<n0(Z) n0 V>g>g> :- <X a f<Y b f<Z c V>g>g>

<l0(X) l0 f<f(Y) m f<n(Z) n V>g>g> :- <X a f<Y b f<Z c V>g>g>

(Q25) <l(X) l f<f(Y) m f<n(Z) n V>g>g> :- <X a f<Y b f<Z c V>g>g>

<l0(X) l0 f<f(Y) m f<n0(Z) n0 V>g>g> :- <X a f<Y b f<Z c V>g>g>

Notice that queries (Q24) and (Q25) have their heads and bodies in normal form. Also notice that there

are no mappings from either rule of (Q24) to either rule of (Q25) and vice versa. 2

To solve problems such as those posed by the above example we have to further normalize TSL rules, as

explained in Section 4. The following rules are the graph component queries of (Q24).
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top(l(X)) :- <X a f<Y b f<Z c V>g>g>

member(l(X),f(Y)) :- <X a f<Y b f<Z c V>g>g>

member(f(Y),n0(Z)) :- <X a f<Y b f<Z c V>g>g>

<l(X) l fg> :- <X a f<Y b f<Z c V>g>g>

<f(Y) m fg> :- <X a f<Y b f<Z c V>g>g>

<n0(Z) n0 V> :- <X a f<Y b f<Z c V>g>g>
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INPUT A single path condition c, and a normal-form rule head r

OUTPUT A set S of uni�ers � such that �(r) contains �(c)

METHOD Run the function S =unify(c,r,[])

function unify(c,r,�) returns sets of uni�ers

apply � to c:oid and r:oid

if term uni�cation of c:oid and r:oid results in �oid unify object-id's

apply �oid � � to labels of c and r

else return empty set

if uni�cation of c:label and r:label results in �label unify labels

apply �label � �oid � � to values of c and r

else return empty set

if c:value and r:value are terms and their term uni�cation results in �value

if atomic objects then unify the term values

return �value � �label � �oid � �

else if c:value is a variable and r:value is a set

return [c:value 7! r:value] � �label � �oid � �

else if c:value is a set fc1 : : : cdg and r:value is a variable

if there is already de�nition of the form r:value 7! fs1 ldotsspg

return [r:value 7! fc1; : : : ; cd; s1; : : : ; spg]i�rc�label � �oid � �

else

return [r:value 7! fc1; : : : ; cdg] � �label � �oid � �

else if c:value is the empty set and r:value is a set

return �label � �oid � �

else if c:value has a subobject condition c0 and r:value is a set

for each subobject ri or r:value

Si =unify(c0, ri, �label � �oid circ�)

return the union [iSi of the results of the unify calls above

else return empty set

Figure 4: The uni�cation algorithm
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