
Abstract

The thesis presents a system that provides integrated access to heterogeneous information sources that may
contain unstructured or semistructured data that are not described by a regular schema (e.g., the World-
Wide-Web). The sources may have di�erent and limited query capabilities and complete knowledge of their
contents and structure may not exist.

First an abstraction is proposed for the representation of semistructured sources. Then a query translation
scheme is proposed for the rapid development of wrappers, i.e., agents that transform queries expressed in the
common data model to queries in the native language of the underlying information source. The implementor
provides a description of the (potentially limited) set of queries supported by the wrapper along with actions
that do the translation.

Finally, an object-oriented logic is proposed for the declarative speci�cation of mediators, i.e., agents that
create integrated views of the data exported by the wrappers. The mediators can fuse data in an environment
of semistructured sources and/or sources with changing schemas (indeed, the implementor does not need
complete knowledge of the sources schemas.) The thesis presents and evaluates key query decomposition and
optimization techniques that signi�cantly reduce the cost associated with information fusion in the described
environment. In addition, it presents an algorithm, run by the mediator, that given the descriptions of the
(potentially limited set of) queries supported by the underlying wrappers it develops plans that retrieve the
needed data using supported queries only. The descriptions may or may not be schema speci�c and they
can describe very large or even in�nite sets of \query patterns".

Most of the proposed system is implemented, as part of the TSIMMIS project at Stanford University,
and integrates information from relational databases, semistructured �les, and legacy systems. Part of the
work has been done for the Garlic project at IBM Almaden.



Chapter 1

Introduction

A signi�cant challenge facing the database �eld in recent years has been the integration of heterogeneous
databases. Enterprises tend to represent their data using a variety of con
icting data models and schemas,
while users want to access all data in an integrated and consistent fashion. There has been substantial
progress on database integration techniques [A+91, Gup89, LMR90, T+90]; in addition, emerging standards
such as SQL3 are aimed at eliminating many of the problems.

At the same time, however, the problem of integration has become much more challenging because users
want integrated access to information|data stored not just in standardized SQL databases, but also in, e.g.,
object repositories, knowledge bases, �le systems, and document retrieval systems. In addition, users want
to integrate this information with \legacy" data, and even with data that is not stored but rather arrives
on-line, e.g. over a news wire. As an example, consider a stock broker tracking a company, say IBM. The
broker's information sources may include IBM product announcements, the stock market ticker tape, IBM
pro�t/loss statements, news articles, structured databases containing historical information (dividends per
year), personnel information (the 100 top-paid executives), general information (the Fortune 500), and so
on. Queries may range from simple ones over a single source (e.g., What were IBM sales in 1990?), to ones
involving multiple sources (e.g., Get all recent news items where an IBM executive is mentioned), to complex
analyses (e.g., Is IBM stock a good buy today?).

The goal of this thesis is the development of technologies that allow integrated query processing over
heterogeneous information sources. Work done on the integration of conventional databases has already
demonstrated the complexity of the integration activity. Moreover, the integration of multiple arbitrary
sources is even harder because of the following special characteristics of the environment:

� The integration system can not be based on the assumption that there are well-structured schemas
describing each source - as is the case with relational or object-oriented databases. There are two
reasons for this requirement:

1. Many of the sources contain data that is unstructured or semistructured, having no regular schema
to describe the data. For example, a source may consist of free-form text; even if the text does
have some structure, the \�elds" (e.g., author, title, etc.) may vary in unpredictable ways.

2. The environment is dynamic. The number of sources, their schemas, and the meaning of their
schemas may change frequently. For example, the stock broker's company may add or drop an
information source depending on its cost and usefulness; attributes may be dropped from some
tables and other attributes may be introduced. The sources may not give any noti�cation to the
integration system about these changes.

In light of these challenges we �rst developed a schema-less information exchange model. Then we
developed an integration system where the integration process is described declaratively and the system
can gracefully handle semistructured data and/or limited knowledge of the source structure.
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Figure 1.1: The TSIMMIS architecture for integration

� The sources have di�erent and limited query capabilities. For example, a powerful relational database
can answer arbitrarily complex SQL queries, such as \�nd the stocks that increased more than the aver-
age." On the other hand, a primitive source may only be able to export a �le with recent stock market
prices. In this case, the complex query mentioned above can not be directly answered. Nevertheless,
the integration system could obtain the answer to the query by retrieving the full �le, computing the
average increase, and �nding the stocks that have increased more than the average.

In light of this challenge, we developed algorithms that, given descriptions of the query capabilities of
the sources, allow the integration system to adapt to the sources' capabilities.

Before we proceed with a brief presentation of our systems' architecture we make a few remarks that
may help position our work. First, the thesis focuses on query processing issues pertaining to an integration
system. There are many other aspects of an integration system that are equally important (e.g., updates,
user interface, and so on) but are not discussed in this thesis. Second, most of the work described in this
thesis has been implemented as part of the TSIMMIS system. Indeed, most of the problems that we solve
became apparent as the system was being built and tested.

1.0.1 Basic Architecture, Terminology, and System Operation

The TSIMMIS data-integration system provides integrated access via an architecture (see Figure 1.1) that
is common in many projects: Wrappers [C+95, FK93] (also called translators [PGMW95]) convert data
from each source into a common object-oriented model, as illustrated in Figure 1.1. The wrappers also
provide a common query language and common data model for extracting information. When they receive
a query they translate it into a source-speci�c query or command that is issued to the source. On the
way back, they translate the source result into the common model. Applications can access data directly
through wrappers, but they may also go through mediators [PGMW95, Ire, Wie92]. A mediator combines,
integrates, or re�nes data from wrappers, providing applications with a \cleaner" integrated view. For
example, a mediator for Computer Science publications could provide access to a set of bibliographic sources
that contain relevant materials. Users accessing the mediator would see a single collection of materials, with,
for example, duplicates removed and inconsistencies resolved (e.g., all authors names would be in the format
last name, �rst name.)

The main focus of this thesis is the development of technologies that allow the implementation of wrappers
and mediators from high level speci�cations of their functionality, as shown in Figure 1.2. We develop a
mediator by providing a declarative mediator speci�cation to a generic mediator speci�cation interpreter that
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we developed. Similarly, we develop a wrapper by providing a wrapper speci�cation to a generic wrapper
generator that we developed. The wrapper speci�cation shows how queries expressed in the common query
language are translated into queries expressed in the native query language of the underlying sources.

During run time, when the mediator receives a client query it decomposes it into common language
queries which are sent to the wrappers. These queries are translated by the wrappers into queries of the
underlying system. However, given the limited capabilities of the sources, it is not easy to derive a native
query which is actually supported by the underlying system. There are two approaches to this problem:

� The TSIMMIS approach: The wrappers can indirectly support queries which are not directly
supported by the underlying system. Then the mediator decomposes client queries assuming that the
wrappers are powerful enough to handle any query they are given. Hence, the query decomposition
module of the mediator is not restricted to using the limited set of queries which are supported by
the underlying source. This is the approach that has been actually implemented in TSIMMIS and is
presented in detail in Chapters 3 to 7.

� The Garlic approach: The wrappers may support only a limited set of queries which are either
directly supported by the underlying system or they are \easy" to implement at the wrapper level.
Then the mediator adapts to the limited capabilities of the wrappers. The Garlic approach is described
in Chapter 8.

The Garlic approach is superior to the TSIMMIS approach in that there are client queries which can
be handled using the Garlic approach but can not be handled using the TSIMMIS approach. This power
di�erence will become explicit in Chapters 7 and 8. On the other hand the TSIMMIS approach leads to a
simpler separation of tasks. In particular, TSIMMIS mediators | unlike Garlic mediators | do not handle
query optimization in parallel with the limited query capabilities issues. This separation of tasks simpli�es
the algorithms.

Overview

In Chapter 2 we present related work from database integration and other �elds that is instrumental to the
wrapper and mediator technologies. Note, we also discuss work that is related to each chapter at the end
of it. In Chapter 3 we describe the data model on which we build our integration system and we explain
our motivation for choosing this model for our system. We also describe the client-server architecture of our
system. Chapter 4 presents a mediator speci�cation language that allows the implementor to declaratively
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specify how the data exported by wrappers are integrated into a single view. Chapter 5 discusses the query
processing algorithms of the mediator speci�cation interpreter and Chapter 6 assesses the performance of the
interpreter's algorithms. In Chapter 7 we describe the wrapper generation technology and discuss a solution
to the limited query capabilities problem. Chapter 8 presents a more powerful approach to the problem of
adapting to limited and di�erent source capabilities. Appendices provide the formal semantics of languages
that have been presented in this thesis and the full description of algorithms that are too complex to be
formally described in the main body of the thesis.
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Chapter 2

Related Work

We summarize in the following paragraphs work that is related to the wrapper and mediator technologies
described in the subsequent chapters. Note, detailed comparisons between speci�c topics of this thesis and
related work are found in the corresponding chapters.

Earlier database integration works [A+91, K+93, BLN86, LMR90, T+90, Gup89, FLNS88, ACHK93]
focused on the integration of well-structured databases that support powerful query languages. As described
in the introduction, this thesis focuses on extending/adapting these technologies for integrating arbitrary
information sources. Hence, we revisit many concepts of database technology.

We classify the related work in four categories. First, we describe data modelling work that a�ected our
development of the TSIMMIS object-oriented data model. Second, we describe view speci�cation and query
language works and we compare them with our mediator speci�cation language which can be viewed as an
object-oriented query/view language. Third, we describe query processing techniques that have been used or
extended in our system. Finally, we present work related to wrapper generation and the problem of limited
query capabilities.

Data Modelling and Semistructured Data Our focus is on semistructured data, which is information
that may not conform to a rigid schema �xed in advance. It is frequently found, for instance, in the World-
Wide-Web, SGML documents, semistructured repositories such as ACeDB [TMD92] (very popular among
biologists in the Human Genome Project), and Lotus NOTES[Mar93]. To represent such data, we use
a \schemaless"(or self describing [MR87]) object-oriented model. Indeed, many applications that have to
deal with semi-structured information use a self-describing model, where each data item has an associated
descriptive label. Applications include tagged �le systems [Wie87], Lotus NOTES [Mar93], the Teknekron's
Information Bus [O+93], LOOM frames [MY89], electronic mail, RFC1532 bibliographic records, and many
more. In [PGMW95] we have de�ned a self-describing data model [MR87], called the Object Exchange
Model (OEM), that captures the essential features of the self-describing models used in practice and also
generalizes them to allow nesting and to include object identity. Many projects have used object-oriented
models for integration purposes [C+95, A+91]. The main di�erence between OEM and these strongly-typed
object-oriented data models [Cat94, KKS92] is the absence of a prede�ned schema in OEM.

Mediation, Object-Oriented View De�nition and Query Languages Our work builds on many
prior results and experiences, and we brie
y review here some of them. Many projects have dealt with
data integration and fusion (e.g., [LMR90, Gup89, A+91, C+95, S+, FK93, HM93, H+92, TRV95, K+93].)
Most of them base fusion on a precise description of the schemas exported by the sources, along with
designer provided descriptions of the semantic connections between the entities of the schemas ([HM93, H+92]
are representative of this approach.) [MIR94, MI93] consider the problem of schema integration from the
perspective of information capacity. Also, CASE tools have adopted the approach of thoroughly modelling
the source data semantics (e.g., [DIS, Inc]). Thorough classi�cations have been developed for the various
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schematic and semantic con
icts that may be found in schemas, and corresponding techniques are suggested
for con
ict resolution [BLN86, DH86, ME84, K+93]. Some approaches go one step further by modeling
the sources as knowledge bases (see e.g., [EL85, ACHK93]) and use this knowledge to perform integration.
Unlike these approaches we assume minimal knowledge of the structure and contents of the sources.

Querying and integrating semistructured data is also considered in [FK93, QRS+95, PGMU96, ACM93,
PDS95]. We believe that approaches based on the relational model (and corresponding view de�nition
languages) are not applicable here. (Indeed, one may argue that they are insu�cient even for relational
database integration [KLK91].) Object-oriented database systems do provide more 
exibility. However,
their strict type system [C+95, BDH+95] sometimes is a handicap. Also, primitives for data integration
found in these systems are still quite limited, with some exceptions like work on views in the context of OQL
(e.g., [SAD94]).

The mediator speci�cation language is essentially an object-oriented logic, but has certain simplifying
features that we present in Chapter 4. Indeed, in the absence of negation and semantic object-id's, MSL can
be viewed simply as a variant of Datalog [Ull88]. However, unlike Datalog, MSL makes it possible to handle
both unstructured and structured data.

Object identity plays an instrumental role in the speci�cation of mediators that fuse objects. In particular,
MSL's handling of object identity is in
uenced by [Mai86, KKS92, CKW93, KL89, HY90, AK89]. Further
discussion on this topic appears in Section 4.5. Finally, MSL can handle schema components and can be
compared in this aspect to [LSS93, KLK91] (details in Section 4.5).

Query Processing Though MSL can be reduced to a variant of Datalog [Ull89], query execution against
mediators cannot be achieved by a simple modi�cation of datalog evaluation mechanisms because the envi-
ronment (i.e., remote heterogeneous sources) is radically di�erent from a conventional database. We present
a variant of top-down depth-�rst resolution [GN88] to formulate the queries that will be sent to the sources
and also push conditions to the sources, hence implementing the well known algebraic optimization tech-
nique. Beyond this, we also investigate optimizations needed for reducing the volume of data that is retrieved
from the sources during object fusion and we show that our technique outperforms traditional optimization
algorithms [OV91].

Wrapper Generation and the Problem of Limited Query Capabilities Our wrapper generation
technology is reminiscent of the Yacc parsing facility. Earlier wrapper- generation e�orts have either used
brute force [EH86, FK93] or have focused on speci�c translations. For example, there are algorithms for
translating schemas and queries of a data model A (say, relational) to schemas and queries of a data model
B (say, an object-oriented data model)[A+91]. Our query translation methodology is more general and it
also handles the case where the source has limited query capabilities, i.e., not every query over the schema
of the underlying source can be answered.

We contribute in two ways to the problem of limited query capabilities that has been recently recognized
[RSU95, C+95] as being very important in integration of arbitrary heterogeneous information sources: First,
we provide a concise language for description of query capabilities. Second, we automatically increase the
query capabilities of a source.

The problem of �nding how to process a query which is not directly supported by the underlying sources
is related to the problem of determining how to answer a query using a set of materialized views in place
of some of the base relations used by the query [LY85, LMSS95, RSU95]. These works use a �xed set of
prespeci�ed views to answer a query. However, we use an in�nite set of views that are speci�ed via templates.
[LRU96] provides some important theoretical results on using Datalog programs for describing the limited
capabilities of sources.

6



Chapter 3

Information Exchange in TSIMMIS

The components of our integration architecture need to exchange data objects (units of information), either
for examination by an end user or for integration with other data objects. For this, there needs to be an
agreement as to how objects will be requested, how they will be represented, what the semantic meaning
of each object (and its components) is, and how objects are actually transported over the network. This
brings up the question \Which are the properties of a model appropriate for integration ?" In this chapter
we address this question and we discuss the data model and the communication protocol that form the
information exchange protocol between any two components of our architecture.

In Section 3.1 we present an \object exchange model" (OEM) that we believe is well suited for informa-
tion exchange in heterogeneous, dynamic environments. OEM is 
exible enough to encompass all types of
information, yet it is simple enough to facilitate integration; OEM also includes semantic information about
objects. In Section 3.2 we present a pair of general-purpose libraries we have implemented that support OEM
object exchange between any client and server processes. The procedures in these libraries are linked with
the server program or the client program, thus allowing the development of client programs with embedded
calls for the exchange of objects. They provide communication services, session handling, object memory
management, and partial object fetches (since the result of a query may be large). In Section 3.3 we compare
our information exchange protocol to other information exchange protocols.

3.1 Object Exchange Model

The �rst question to be addressed is: with so many data models around, why do we need another one? In
fact we do not need another new data model. Rather, we adopt an essential set of data model concepts that
have been used for more than 30 years. Using these concepts we formally cast a data model that facilitates
information exchange in heterogeneous systems.

The basic idea is very simple: each value we wish to exchange is given a label (or tag) that describes its
meaning. For example, if we wish to exchange the temperature value 80 degrees Fahrenheit, we may describe
it as:

htemperature-in-Fahrenheit, integer, 80i

where the string \temperature-in-Fahrenheit" is a human-readable label, \integer" indicates the type of the
value, and \80" is the value itself. If we wish to exchange a complex object, then each component of the
object has its own label. For example, an object representing a set of two temperatures may look like:

hset-of-temperatures, set, fcmpnt1, cmpnt2gi
cmpnt1 is htemperature-in-Fahrenheit, integer, 80i
cmpnt2 is htemperature-in-Celsius, integer, 20i
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A main feature of OEM is that it is self-describing. We need not de�ne in advance the structure of an
object, and there is no notion of a �xed schema or object class. In a sense, each object contains its own
schema. For example, \temperature-in-Fahrenheit" above would play the role of a column name, were this
object to be stored in a relation, and \integer" would be the domain for that column.1

Note that, unlike in a database schema, a label here can play two roles: identifying an object (component),
and identifying the meaning of an object (component). To illustrate, consider the following object:

hperson-record, set, fcmpnt1, cmpnt2, cmpnt3gi
cmpnt1 is hperson-name, string, \Fred"i
cmpnt2 is ho�ce-number-in-building-5, integer, 333i
cmpnt3 is hdepartment, string, \toy"i

Like a column name in a relation, the label \person-name" identi�es which component in the person's
record contains the person's name. In addition, the label \person-name" identi�es the meaning of the
component|it is the name of a person. We would not expect to �nd a dog's name \Fido" or \Spot" in this
component.

Thus, we assume that labels are as descriptive as possible. (For instance, in our example above, replacing
\person-name" by \name" would not be advisable.) In addition, if an information source exports objects
with a particular label, then we assume that the source can answer the question What does this label mean?.
The answer should be a human-readable description|a type of \man page" (similar in 
avor to Unix Manual
pages). For example, if we ask the source that exports the above object about \person-name," it might reply
with a text note explaining that this label refers to names of employees of a certain corporation, the names
do not exceed 30 characters, and upper vs. lower case is not relevant.

It is particularly important to note that labels are relative to the source that exports them. That is, we
do not expect labels to be drawn from an ontology shared by all information sources. For example, a client
might see the label \person-name" originating from two di�erent sources that provide personnel data for two
di�erent companies, and the label may mean something di�erent for each source; the client is responsible for
understanding the di�erences. If the client happens to be a mediator that exports combined personnel data
for the two companies, then the mediator may choose to de�ne a new label \generic-person-name" (along
with a \man page"), to indicate that the information is not with respect to a particular company.

We believe that a self-describing object exchange model provides the 
exibility needed in a heterogeneous,
dynamic environment. For example, personnel records could have fewer or more components than the ones
suggested above; in our temperatures set, we could dynamically add temperatures in Kelvin, say. In spite
of this 
exibility, the model remains very simple.

As mentioned earlier, the idea of self-describing models is not new|such models have been used in a
variety of systems (see Section 3.3 for a discussion of these models and systems). Nevertheless, it is useful
to formally cast a self-describing model in the context of information exchange in heterogeneous systems
(something that has not been done before, to the best of our knowledge), and to extend the model to include
object nesting as illustrated above. To do this, a number of issues must be addressed, as will be seen in the
following section.

3.1.1 Speci�cation

Each object in OEM has the following structure:

Object-Id Label Type Value

where the four �elds are:

1Of course, if we are exchanging a set of objects where each object has the same structure and labels, then it would be
redundant to transmit labels with every member of the set. We view this as a \data compression" issue and do not discuss it
further here. From a logical point of view, we assume that each object in our model carries its own label.
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� Label: A variable-length character string describing what the object represents.

� Type: The data type of the object's value. Each type is either an atom (or basic) type, such as
integer, string, real number, etc., or the type set, or the type list. The possible atom types are
not �xed and may vary from information source to information source 2.

� Value: A variable-length value for the object.

� Object-ID: A unique variable-length identi�er for the object.

In denoting an object, we often drop the Object-ID �eld, i.e. we write hlabel,type,valuei, as in the examples
above.

Object identi�ers (henceforth referred to as OID's) may appear in set and list values as well as in the
Object-ID �eld. We provide a simple example to show how sets (and similarly lists) are represented without
OID's, and to motivate the kind of OID's that are used in OEM. Then we discuss OID's in set and list
values.

Suppose an object representing an e-mail message has label \message" and a set value. The set consists
of three subobjects, an \author", a \title" and a \text". All four objects are exported by an information
source IS through a wrapper, and they are being examined by a client C. C can retrieve the \message"
object by posing a query (see Chapter 4 or [QRS+95]) that returns the object as an answer.

Assume for the moment that the \message" object is fetched into C's memory along with its three
subobjects. The value �eld of the \message" object will be a set of object references, say fo1; o2; o3g.
Reference o1 will be the memory location for the \author" subobject, o2 for the \title," and o3 for the
\text." Thus, on the client side, the retrieved object will look like:

hmessage, set, fo1, o2, o3gi
o1 is location of hauthor, string, \author's name"i
o2 is location of htitle, string, \some title"i
o3 is location of htext, string, \a long string"i

On the information source side, the \message" object may map to a real object of the same structure, or
it may be an \illusion" created by the wrapper from other information. Suppose IS is an object database,
and the \message" object is stored as four objects with immutable OID's id0 (message), id1 (author), id2
(title), and id3 (text). In this case, the retrieved object on the client side would have id0 in the Object-ID
�eld for the message object, id1 in the Object-ID �eld for the author object, and so on. The Object-ID
�elds tell client C that the objects it has correspond to identi�able objects at IS. Such OID's can be used
to retrieve again from the IS the objects that they identify, at any time.

However, in many cases it is complicated, inne�cient or even impossible to create a meaningful OID
for some object. For example, suppose that the IS is a common mailbox �le that contains a sequence of
mail messages. In this case the wrapper places an arbitarry string starting with & in the OID �eld for the
\message", \author", \title" and \text" objects.

So far we have assumed that the client retrieves the \message" object and all of its subobjects. However,
for performance reasons, the wrapper may prefer not to copy all subobjects. For example, if the \text"
subobject is a very large string, it may be preferable to retrieve the \author" and \title" subobjects in their
entirety, but retrieve only a \placeholder" for the \text" object. In this case, the value �eld for the \message"
object at the client will contain fo1; o2; id3g. This indicates that the \author" and \title" subobjects can be
found at memory locations o1 and o2, but the \text" subobject will be explicitly retrieved using OID id3,
if the client judges that the \text" will be interesting to him. Note if it is di�cult to construct meaningful
object-id's it is a heavy burden for the wrapper to keep track of all arbitrary object-id's it has ever generated.
Hence, arbitrary object-id's expire once the next query is given to the wrapper.3

Note that, regardless of the representation used in set and list values, the wrapper always gives the client
the illusion of an object repository. Thus, we can think of our \message" object as:

2For example, a multimedia source may o�er a wide variety of non-conventional data types.
3Another option is to allow arbitrary object-id's to be valid for the whole client-server session
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hmessage, set, fcmpnt1, cmpnt2, cmpnt3gi
cmpnt1 is hauthor, string, \author's name"i
cmpnt2 is htitle, string, \some title"i
cmpnt3 is htext, bits, \a long string"i

where each cmpnti is some mnemonic identi�er for the subobject. (Recall, if cmpnti is not meaningful it
starts with a &.) Indeed, in the rest of the thesis we'll use the following notation for objects:

hcmpnt0, message, set, fcmpnt1, cmpnt2, cmpnt3gi
hcmpnt1,author, string, \author's name"i
hcmpnt2,title, string, \some title"i
hcmpnt3,text, bits, \a long string"i

A �nal issue regarding OEM is that of duplicate objects at the client. Suppose, for example, that set
object A at the information source has B and C as subobjects. Both B and C are of set type, and both
have as subobjects the same object D. A query at a client retrieves A and all of its subobjects. Will the
client have a single copy of object D, or will objects B and C point to di�erent copies of D?

Our model does not require a single copy of D at the client, since this would place a heavy burden on
wrappers that are not dealing with real objects at the information source. However, if both copies of D have
the same Object-ID �eld, then the client can discern that the two objects correspond to the same object at
the source. Also note that we do not require wrappers to discover cyclic objects at the source. Suppose, for
example, that A has B as a subobject and B has A as a subobject. If the client fetches A from a \smart"
wrapper, the wrapper would return only two objects, a copy of A and a copy of B. Each object's set value
would be a reference for the other object. However, a \dumb" wrapper is free to return, say, four objects,
A1, B1, A2, B2, where A1 references B1, B1 references A2, A2 references B2, and B2 contains only the
object-id's for the subobjects.

3.2 The OEM Support Libraries

OEM and OEM-QL are designed for a client to send queries and obtain corresponding answer objects from
a server. The server may be a wrapper or a mediator, while the client may be a mediator or an end-user
program (such as the Mobie browser described in [H+95]). We have implemented general-purpose OEM
Support Libraries that provide the common functionality needed for object and query exchange. There are
two main components: the Client Support Library (CSL) and the Server Support Library (SSL).

Figure 3.1 illustrates how the Support Libraries are used. The implementor of client applications links
CSL with the client program in order to create programs with embedded CSL calls; CSL calls are used to
establish connections with TM servers, to send queries, and to receive OEM objects. CSL procedures handle
all low level communications, and deposit retrieved objects in a main memory object bu�er. At the server
side, the SSL handles incoming connections, bu�er management, and management of \slave" processes to
execute queries. Note that if a server S obtains its information from another wrapper or mediator, then S
also acts as a client, so it also uses the CSL.

Our Support Libraries expedite the implementation of mediators, wrappers, and end-user programs. In
addition, implementing these libraries has brought to the surface a number of interesting issues regarding the
exchange of objects when one or more participants are not inherently object-oriented. As far as we know,
these issues do not arise in conventional, homogeneous object-oriented systems (or at least not in quite this
way). Here we discuss one of the most important issues that has arisen, namely that of partial object fetches.

In many cases it is extremely ine�cient to send the complete answer object to the client in one step. In
particular:

1. The client has to wait until the full answer is retrieved from the information source before examining
the object. This prevents \pipelined" operation, where the client starts processing subobjects as they
arrive. The problem is exacerbated if we have a string of mediators between the source and the client:
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Figure 3.1: Use of the OEM Support Libraries

the client cannot begin processing the answer until all of the intermediate TM's have completed their
work.

2. The answer object may be very large. Once a client inspects part of the answer object, the client may
determine that it does not need some portions of the answer object, or perhaps does not need the
object at all.

To avoid these problems, the Support Libraries provide a partial fetch mechanism that enables clients
to retrieve only parts of the answer object. The mechanism is used as follows. When the client wishes to
request an object, it calls a query() function, passing the query as a parameter. The client can then fetch
either the full answer object (including subobjects) by calling the getFullObject() function, or the client
can fetch only the root of the answer object by calling the getRootObject() function. In the latter case,
additional getFullObject() and/or getRootObject() calls are used to fetch the subobjects.

Calls to the getRootObject() function lead to incomplete objects in the client's memory. To illustrate,
consider an answer object A whose value is a set of three subobjects, B, C, and D. If a copy of A is fetched
in the client memory with a getRootObject() call, then the value of A will be a set of three references
u1; u2; u3. Indeed, even if the full object A is requested (using a getFullObject()), if a subobject of A,
say C, is very large the server may decide not to fetch C in the client's memory. Thus, we see that during
a client-server session either the client or the server may decide not to fetch some (or all) subobjects of an
object A, upon fetching A.

Consider now what happens when a client wants to examine an unfetched object. One option is to
have the server provide object references u1; u2; u3 to the unfetched objects. Then the client can issue fetch
calls such as getFullObject(u2) or getRootObject(u2). Furthermore, the object references may contain
semantic information that guides the client in traversing the OEM structure. For example, the object
references could contain the label of the referenced object.

However, in many cases the server can not export object references for the subobjects because the
information source does not provide any good way to refer to subobjects. For example, the Folio bibliographic
source returns a stream of documents and the wrapper has no control over the order of the output. Had
the wrapper wanted to export meaningful object references it would have to �rst retrieve the documents.
But such an action de�es the original motivation of partial fetch. For these cases the server can output an
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iterator which can be used from the client for \getting the next object."
Our goal has not been a full description of the Support Libraries or a major contribution in information

exchange. Instead we provide an illustration of the challenging practical issues that arise when the \fetch
abilities" of the sources vary, and of the simple solutions which often are su�cient. A more powerful approach
to querying and browsing is presented in [CHMW96] where querying and browsing is integrated instead of
being two separate phases.

3.3 Discussion and Related Work

In this section we contrast OEM with other similar models and systems. We focus particularly on the
di�erences between OEM and more conventional object-oriented models, and we discuss the motivation
behind our design of OEM.

Labeled �elds are used as the basis of several data models or data formatting conventions. For example,
a tagged �le system [Wie87] uses labels instead of positions to identify �elds; this is useful when records may
have a large number of possible �elds, but most �elds are empty. Electronic mail messages consist of label-
value pairs (e.g. label \From" and value \yannis@cs.stanford.edu"). More recently, Lotus Notes [Mar93] has
used a label-value model to represent o�ce documents, and Teknekron Software Systems [O+93] has used
a self-describing object model for exchange of information in their stock trading systems. Also [LMR90]
and [MR87] recognize that increased 
exibility is required in heterogeneous system and as a solution they
propose methods for the development of self-describing databases .

Recent projects on heterogeneous database systems (e.g., [A+91, Ber91, K+93]) have applied object-
oriented (OO) data models to the problem of database integration. OEM di�ers from these and other OO
data models in several ways. First, OEM is an information exchange model. OEM does not specify how
objects are stored at the source. OEM does specify how objects are received at a client, but after objects
are received they can be stored in any way the client likes. OEM explicitly handles cross-system OID's (e.g.,
in Section 3.1.1 a \message" object at the client points to a \text" object at the source). In a conventional
OO system there may also be client copies of server objects, but there the client copy is logically identical
to the server copy and an application program at the client is not aware of the di�erence.

A very important di�erence between OEM and conventional OO models is that OEM is much simpler.
OEM supports only object nesting and object identity; other features such as classes, methods, and inheritance
are omitted. (Incidentally, [Cat91] claims that the only two essential features of an OO data model are nesting
and object identity.) Our primary reason for choosing a very simple model is to facilitate integration.
As pointed out in [BLN86], simple data models have an advantage over complex models when used for
integration, since the operations to transform and merge data will be correspondingly simpler. Meanwhile,
a simple model can still be very powerful: advanced features can be \emulated" when they are necessary.
For example, if we wish to model an employee class with subclasses \active" and \retired," we can add a
subobject to each employee object with label \subclass" and value \active" or \retired." Of course this is
not identical to having classes and subclasses, since OEM does not force objects to conform to the rules for
a class. While some may view this as a weakness of OEM, we view it as an advantage, since it lets us cope
with the heterogeneity we expect to �nd in real-world information sources.

Furthermore, the simple and schemaless nature of OEM often allows us to model complex features of
the source in a user-friendly way. For example, consider a relational (or deductive) database that contains
a parent-table(parent, child) table. If we wish to provide an OEM model of this source that will make
easy to �nd the ancestors of a person, we can make the object that corresponds to any person contain as
subobjects the objects that correspond to his/her parents. Then, it is easy for the user to place a query that
retrieves all ancestors of a person. On the same time, the user can easily browse the genealogical tree of a
person using the browsing facility described in [H+95].

Also, the schemaless nature of OEM is particularly useful when a client interfaces with a source whose
structure is unknown. In traditional object oriented and relational databases a client must know the schema
in order to indicate where the data, which is fetched from the database, is placed in the client program's
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memory. On the other hand, using OEM a client program does not have to know anything about the objects
to be fetched. This feature has greatly simpli�ed the development of programs like the general-purpose
MOBIE browser [H+95] which naturally can not know in advance the structure of the underlying source.

Someone might wonder how do we start querying a source with unknown schema and structure? How
can we be sure that we did not �nd \employees" because there are no \employees" as opposed to not �nding
any because they are actually labeled as \emp". The answer is that we can always issue queries that retrieve
labels and structure. Then using the preliminary fashion about structure and labels we can query.

The simplicity of using OEM in this context is evident even when it is compared against standardization
proposals that also address the problem of object exchange in heterogeneous environment, e.g., CORBA's
Object Request Broker.4

A �nal distinct di�erence between OEM and conventional OO models is the use of labels in place of a
schema. Clearly, it would be trivial to add labels to a conventional OO model (e.g., all objects could have an
attribute called \label"). The only di�erence then is that in OEM labels are �rst-class citizens. We believe
this small change makes interpretation and manipulation of objects more straightforward, as discussed in
the next section.

4Other standards, like ODMG's Object Database Standard [Cat94] are more directed to facilitating interoperability and
portability, rather than facilitating object exchange in heterogeneous environment
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Chapter 4

The Mediator Speci�cation Language

Given a set of sources with wrappers which export OEM objects, we would like to build mediators to integrate
and re�ne the information. The signi�cant programming e�ort involved in the hard-coded development of
TSIMMIS mediators [Ire] suggests the need for development of systems that facilitate mediator development.
Our mediation system,MedMaker, provides a high level language, called the Mediator Speci�cation Language
(MSL), which allows the declarative speci�cation of mediators. MSL can also serve as a query language and
we will indeed use it to simplify the discusiion of query processing.

At run time, when the mediator receives a query, MedMaker's Mediator Speci�cation Interpreter (MSI)
collects and integrates the necessary information from the sources, according to the speci�cation. The
process is analogous to expanding a query against a conventional relational database view. Indeed, MSL can
be seen as a view de�nition language which is targeted to the OEM data model and the functionality needed
for integrating heterogeneous sources. The special requirements of integration led to the introduction of a
number of useful concepts and properties that are not found in conventional view de�nition languages:

� MSL mediator speci�cations can handle some schema evolution of the underlying sources without a
need for rewriting of the speci�cation (see Section 4.1).

� MSL can handle structure irregularities of the sources without producing erroneous or unexpected
results.

� MSL can integrate sources for which we do not fully know the object structures (see Section 4.1).

� MSL can manipulate both the values and the descriptive semantic labels in the same fashion, getting
around problems such as schematic discrepancies [KLK91] (see Section 4.1). Furthermore, MSL can
also manipulate object-id's in the same fashion as values, providing object identi�cation on top of
value-oriented sources. (Indeed, datalog terms can be used for object-id's.)

� MSL provides a 
exible technique (based on object identity) for grouping of source objects that relate
to the same entity.

� MSL facilitates object fusion. This involves grouping together information (from the same or di�erent
sources) about the same real-world entity. In doing this fusion, the mediator may also \re�ne" the
information by removing redundancies, resolving inconsistencies between sources in favor of the most
reliable source, and so on.

The above capabilities are \packaged" in a high-level declarative language that combines power with simplic-
ity and conciseness, thus allowing the client of a heterogeneous system to easily de�ne an integrated view.
Note, we also present a novel approach to object fusion that is based on semantic object identi�ers. The
basic idea is as follows. The mediator is speci�ed by a set of non-procedural, logic rules. Each rule maps
a set of objects at a source, which pertain to some identi�able real world entity, into a \virtual" object at
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the mediator. The virtual object is assigned a semantically meaningful object identi�er. Mediator objects
that have the same object-id are then fused together, in a way that is also speci�ed by the rules. The above
description is conceptual; no objects are fused until a user query arrives at the mediator. (The mediator
speci�cation is like a database view.) Only when a query arrives, are the sources queried for the object
fragments that are necessary for composing the selected fused objects.

As we will see, the single concept of semantic object-id's signi�cantly increases the power and 
exibility
of the language, and makes it relatively easy to specify the most common fusion operations. It also makes it
possible to integrate objects that contain references to other source objects. These \remote references" are
translated into semantically meaningful references at the mediator, allowing the integration of nested and
cross-referenced objects such as those found on the Web.

First, we present an extended example that illustrates the MSL language and some of its integration ca-
pabilities. The example is continued in Section 4.2.1, where we introduce the query processing mechanisms
of MedMaker, though we postpone the complete discussion of MedMaker's query processing until Chap-
ter 5. Section 4.3 presents speci�cations that accomplish complicated tasks such as removing redundancies,
resolving inconsistencies, etc. An introduction to the formal semantics of MSL is provided in Section 4.4.
Section 4.5 compares the mediator speci�cation language to other languages that have been (or could be)
used for integration for the integration of heterogeneous information sources. The complete syntax of MSL
is provided in Appendix A and the complete semantics appear in Appendix B.

4.1 A Mediator Speci�cation Example

For our extended example, we consider two sources that contain information on the sta� of a Computer
Science department. The �rst source is a relational database containing two tables with schemas
employee(first name, last name, title, reports to)

student(first name, last name, year)

A wrapper, named cs, exports this information as a set of OEM objects, some of which are shown in
Figure 4.1. Notice how the schema information has now been incorporated into the individual OEM objects.1

A second source is a university \whois" facility that contains information about employees and students.
A wrapper whois provides access to this source; several sample objects are shown in Figure 4.2. Notice that
in this case there can be irregularities. For instance, object &p1 contains an email subobject while &p2 does
not.

Let us now consider a mediator, called med, that has access to wrappers cs and whois and exports a set of
\cs person" objects. Our goal in this example is that each \cs person" object represents a person appearing
in both sources. The subobjects of each \cs person" object should represent the combined information about
this person. For example, since an object with information about Joe Chung is exported from both cs and
whois, med combines this information and exports the object of Figure 4.3.

4.1.1 Problems in Mediator Speci�cation

Creating the integrated view from the wrapper views requires the resolution of a number of problems:

� schema-domain mismatch: The whois source represents names by a long string that contains both the
�rst and the last name, while the cs database represents names using the \last name" and \�rst name"
subobjects.

1Two minor points: (1) After translation, we have lost knowledge that objects at this source must have a regular structure.
If this information is important to the applications, it could be exported as additional facts about this source. (2) One could
consider it ine�cient to repeat the schema in all objects, in this case where there is a regular pattern to objects. This problem
can easily be addressed by data compression when objects are exported. Conceptually, we believe it is easier to think of each
object as having its own labels.
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<&e1,employee, set, f&f1,&l1,&t1,&rep1g>
<&f1, first name, string, `Joe'>

<&l1, last name, string, `Chung'>

<&t1, title, string, `professor'>

<&rep1, reports to, string, `John Hennessy'>

<&e2,employee, set, f&f2,&l2,&t2g>
<&f2, first name, string, `John'>

<&l2, last name, string, `Hennessy'>

<&t2, title, string, `chairman'>
...
<&s3,student, set, f&f3,&l3,&y3g>

<&f3, first name, string, `Pierre'>

<&l3, last name, string, `Huyn'>

<&y3, year, integer, 3>
...

Figure 4.1: The OEM object structure of the cs wrapper

<&p1,person, set, f&n1,&d1,&rel1,&elm1g>
<&n1, name, string, `Joe Chung'>

<&d1, dept, string, `CS'>

<&rel1, relation, string, `employee'>

<&elm1, e mail, string, `chung@cs'>

<&p2,person, set, f&n2,&d2,&rel2g>
<&n2, name, string, `Nick Naive'>

<&d2, dept, string, `CS'>

<&rel2, relation, string, `student'>

<&y2, year, integer, 3>
...

Figure 4.2: The OEM object structure of whois

� schematic discrepancy: Data in one database correspond to metadata of the other. In particular, the
status of a person { employee or student { appears as a value in whois (it was part of a relational
table), while it appears in the schema of cs (it was part of the relational schema).

� schema evolution: The format and contents of the sources may change over time, often without noti-
�cation to the mediator implementor. For example, an attribute \birthday" may appear in either of
the two sources, or the \e mail" attribute may be dropped. We would like our mediator speci�cation
to be insensitive to as many of these changes as possible. For example, if \birthday" is included or
dropped, it should be automatically included or dropped from the med view, without need to change
the mediator speci�cation.

� structure irregularities: Source whois does not follow a regular schema (i.e., it is a semistructured
source.)

4.1.2 The Mediator Speci�cation of med

The following MSL speci�cation MS1 de�nes the med mediator we have described, resolving the integration
problems we have discussed above. We will explain this speci�cation in the paragraphs that follow.

(MS1) Rules:
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<&cp1,cs person, f&mn1,&mrel1,&t1,&rep1,&elm1g>
<&mn1, name, string, `Joe Chung'>

<&mrel1, relation, string, `employee'>

<&t1, title, string, `professor'>

<&rep1, reports to, string, `John Hennessy'>

<&elm1, e mail, string, `chung@cs'>

Figure 4.3: Object exported by med

<cs person f<name N> <relation R> Rest1 Rest2g>@med
:- <person f<name N> <dept `CS'> <relation R> | Rest1g>@whois

AND decompose name(N, LN, FN)

AND <R f<first name FN> <last name LN> | Rest2g>@cs
External:

decompose name(string,string,string)(bound,free,free) impl by name to lnfn

decompose name(string,string,string)(free,bound,bound) impl by lnfn to name

A speci�cation consists of

1. rules that de�ne the view provided by the mediator, and

2. declarations of functions that will be called upon for translating objects from one format to another.

Each rule (the above speci�cation has only one rule) consists of a head and a tail that are separated by
the :- symbol. The tail describes the patterns of objects that must be found at the sources, while the head
describes the pattern of the top-level objects of the integrated view.

Intuitively, we may think of the process of \creating" the virtual objects of the mediator as pattern
matching. First, we match the patterns that appear in the tail against the object structure of cs and whois,
trying to bind the variables (represented by identi�ers starting with a capital letter, such as N, Rest1, etc.)
to object components of cs and whois. Then we use the bindings to \construct" the objects speci�ed in the
head of the rule.

The speci�cation is based on patterns of the form <object-id label type value>, where we may place
constants or variables in each position. For simplicity we can drop some of the �elds when they are irrelevant.
If one �eld is dropped, we assume it is the type, so we have a pattern of the form <object-id label value>. If
two �elds are dropped, we assume they are the type and the object-id. When the object-id is missing in a
tail pattern, it means that we do not care about the object-id's appearing at the sources. When an object-id
is missing from a head pattern, it means we do not care what object-id the mediator uses for the \generated"
object.

When the label (value) �eld contains a constant, the pattern matches successfully only with OEM objects
that have the same constant in their label (value) �eld. On the other hand, when the label (value) �eld
contains a variable, the pattern can successfully match with any OEM object, regardless of the label (value)
of the object. For example, the pattern <name N> can match with OEM objects <&1, name, string,

`Fred'> or <&2, name, string, `Tom'>. As a result of a successful matching, the variable N will bind to
the value of the speci�c OEM object (either `Fred' or `Tom' in the example).

Returning to our mediator speci�cation example, we match the patterns of the tail against the top-level
objects of the corresponding sources, trying to bind the variables of the tail to appropriate object components.
In particular, we match the pattern

<person {<name N> <dept `CS'> <relation R> | Rest1}>

against the objects of source whois, trying to bind the variables N, R, and Rest1 to appropriate object
components. That is, we try to �nd top-level \person" objects that have a \name" subobject, a \dept"
subobject with value `CS', and a \relation" subobject. The object identi�ed by &p1 (see Figure 4.2) satis�es
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these requirements. As a result, N binds to `Joe Chung', R binds to `employee', and Rest1 binds to the
remaining subobjects, i.e., it binds to f<&elm1, e mail, string, `chung@cs'>g Let us name this set of
bindings bw;1. Other objects may also satisfy these conditions and produce other bindings for N, R, and
Rest1. For instance, N can bind to `Nick Naive', R to `CS', and Rest1 to f<&y2, year, integer, 3>g.

The speci�cation also indicates that we match the pattern

<R {<first_name FN> <last_name LN> | Rest2}>

against the objects at source cs, obtaining bindings for the variables R, FN, LN, and Rest2. Referring to Figure
4.1, we see that one of these binding, call it bc;1, will bind R to `employee', FN to `Joe', LN to `Chung', and
Rest2 to f<&t1, title, string, `professor'> <&rep1, reports to, string, `John Hennessy'>g.

The next step is to match the two sets of bindings. A binding bw;i from whois matches a binding bc;i
from cs if the following conditions hold:

1. The two bindings agree on the values assigned to common variables, in this case, R.

2. The name N found in whois "corresponds" to the last name, �rst name pair LN, FN found in cs.

For example, we see that binding bw;1 matches bc;1 because they both bind R to `employee' and the name
N = `Joe Chung' corresponds to last name LN = `Chung' and �rst name FN = `Joe'.

4.1.3 External Predicates

The correspondence between names and �rst, last name pairs is given by the predicate

decompose_name(N,LN,FN)

Conceptually, we can think of decompose name as a predicate that evaluates to true if N is a valid decom-
position of last, �rst names LN, FN. In practice, decompose name is implemented as a pair of functions,
name to lnfn and lnfn to name (in principle written in any programming language), and de�ned in the
mediator speci�cation. For example, the line

decompose_name(string,string,string)(bound,free,free) implemented by name_to_lnfn

indicates that name to lnfn can be called with a full name (the �rst bound parameter); the function de-
composes the name and returns the last and �rst names (second and third free parameters). Similarly,
lnfn to name can compose a last, �rst name pair and produce a full name. Thus, operationally, to check if
decompose name(`Joe Chung', `Chung', `Joe') is true, we can call name to lnfn with input parameter
`Joe Chung' and see if it returns `Joe' and `Chung'. If it does, the predicate holds. Equivalently, we can
call lnfn to name to perform the check.2

Having more than one function for decompose name gives 
exibility at execution time. For example,
using name to lnfn we can �rst obtain person objects of whois and for each full name we �nd the �rst and
last names and send a query to cs to �nd persons with this �rst name and last name. Using lnfn to name

we can pass bindings in the opposite way | from to cs to whois.

4.1.4 Creation of the Virtual Objects

For each set of matching bindings from the tail patterns, we conceptually create an object in the med view.3

(We stress that objects are not really materialized by the mediator speci�cation.) The head of the rule tells

2Of course, if the implementor had provided a function check name lnfn that is called with all three parameters bound, we
would simply call check name lnfn with input parameters `Joe Chung', `Chung', and `Joe.

3In reality, we �rst project the bindings of the variables of the tail, into bindings of the variables that appear in the head of
the rule. Then we eliminate duplicated bindings, and �nally we create an object of med for each set of bindings of the variables
of the head.
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us how to construct the view objects. For example, the matching bindings bw;1 and bc;1 result in the object
of Figure 4.3.

Note that even though Rest1 and Rest2 are bound to sets of objects, and <name N> and <relation R>

are bound to single objects, we can include all four inside the curly braces that de�ne the subobjects for a
\cs person" object. In general, when variables that have been bound to sets appear inside curly braces fg in
a rule head, the �rst level of their contents is \
attened out" and included in the set value that is described
by the curly braces pattern.

Note also that our sample head did not specify any types or object-id's for the view objects. The types,
of course, are simply set to the types of the bound variables (string in our case.) For the object-id's, any
arbitrary unique strings can be used (e.g., &cp1, &mn1, ... are used in Figure 4.3.)

4.1.5 MSL's Solutions to Mediator Speci�cation Problems

The speci�cation of med solves the integration problems mentioned earlier, mainly by exploiting the free
use of variables in the Mediator Speci�cation Language, and the schema/data combination ability of OEM.
For example, we were able simultaneously to bind variable R to a value in whois and a label in cs, thus
addressing the schematic discrepancy. The schema evolution problem is handled by the use of variables
Rest1 and Rest2. If, say, new attributes such as \birthday" are added to cs, no change is required to the
mediator speci�cation. The new attribute will be included with Rest1 and propagated to the integrated
view. At the same time, the bindings of variables Rest1 or Rest2 are not required to carry homogeneous
sets of objects. For example, binding bw;1 binds Rest1 to f<&elm1, e mail, string, 'chung@cs'>g while
bw;2 binds Rest1 to fg. In this way, MSL can handle the integration of unstructured sources that do not
have a regular schema. Finally, the ability to use external predicates allows us to process atomic values in
any desirable way.

One apparent limitation of the integrated view we have de�ned for med is that it only includes information
for people that appear in both cs and whois. In particular, we may wish to include information in med even if
it appears in a single source. This will be one of the fusion examples that we will demonstrate in Section 4.3.
However, before doing so, in the following section we sketch how our Mediator Speci�cation Interpreter
(MSI) would process an incoming query against the sample de�nition we have given.

4.2 Introduction to Architecture and Implementation of MSI

The Mediator Speci�cation Interpreter (the run time component of MedMaker) processes a query using a
pipeline with the following three components (see Figure 4.4):

19



1. The Query Decomposer and Algebraic Optimizer (QD&AO) reads the query and the mediator speci-
�cation and discovers which objects it must obtain from each source. Furthermore, it determines the
conditions that the obtained source objects must satisfy.

2. The cost-based optimizer develops a plan for obtaining and combining the objects speci�ed by the
QD&AO. The plan speci�es what queries will be sent to the sources, in what order they will be sent,
and how the results of the queries will be combined in order to derive the result objects.

3. The datamerge engine executes the plan and produces the required result objects.

In the following subsection we use an example to overview MSI's query processing. The remaining subsections
describe each MSI component.

4.2.1 Query Processing Overview

Let us assume that a client of mediator med wants to retrieve all the data for `Joe Chung.' We use MSL (with
one minor modi�cation discussed below) as our query language.4 The use of MSL simpli�es our discussion,
and furthermore, MSL makes a good query language because of its power and simplicity. Using MSL, our
query can be expressed as:
(Q1) JC :- JC:<cs person f<name `Joe Chung'>g>@med

The object pattern (or object patterns) that appears in the tail of the query are matched against the object
structure of med in exactly the same manner that tail patterns of MSL rules are matched against the sources.
One new MSL feature that appears in the tail of our sample query is the object variable JC. The operator :
indicates that JC must bind to \cs person" objects that have a \name" subobject with value `Joe Chung'.

The query head indicates that every object that JC binds to is included in the result. Unlike mediator
speci�cation, when MSL is used for querying, the objects speci�ed by the query rule head are materialized
at the client.5

Query Decomposition Given our sample query, the QD&AO replaces the object pattern of the query
tail with object patterns that refer to objects of the sources, thus deriving the datamerge rule R2:

(R2) <cs person f<name `Joe Chung'> <rel R>

Rest1 Rest2g>
:- <person f<name `Joe Chung'> <dept `CS'>

<relation R> | Rest1g>@whois
AND decomp(`Joe Chung', LN, FN)

AND <R f<first name FN> <last name LN>

| Rest2g>@cs

Intuitively, the MSI derived the above rule by unifying the pattern JC:<cs person ...>@med of the query
tail against the head of the mediator speci�cation rule of med.6 After the uni�cation, we generate a datamerge
rule whose head is the head of the query and whose tail is the mediator speci�cation rule's tail.

Execution Plan Now that the MSI knows what objects it has to �nd at the sources, the cost-based
optimizer builds a physical datamerge program that speci�es what queries should be sent to the sources, in
what order they should be sent, and how the results of the queries should be combined in order to produce
the query result. Here we informally describe a possible (and e�cient) plan for our running example:

4The TSIMMIS project at Stanford is also exploring a di�erent query language, called LOREL. It is an object-oriented
extension to SQL and is oriented to the end-user. LOREL is described in [QRS+95]. MSL is more powerful than LOREL (e.g.,
MSL allows the speci�cation of recursive views) and is targeted to mediator speci�cation.

5Here we do not address the problem of materializing OEM objects at clients. The various issues and strategies have been
discussed in Section 3.1.

6If there were several rules, the MSI would look for one or more matching rule heads. If more than one head matches, then
more than one rule will be considered; resulting objects will be added to the result.
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1. Bindings for the variables R and Rest1 are obtained from the source whois. The bindings are obtained
in two steps. First the following query is sent to whois:

<bind for whois f<bind for R R>

<bind for Rest1 Rest1>g>
:- <person f<name `Joe Chung'> <dept `CS'>

<relation R> | Rest1g>@whois

Labels bind for whois, bind for R and bind for Rest1 are simply place-holders that allow the MSI
to conveniently pick out the desired information from the returned result objects.

2. Bindings for LN and FN can be obtained from one of the decomp functions, i.e., from name to lnfn.
We call it with bound parameter N = `Joe Chung' and obtain LN = `Chung' and FN = `Joe'.

3. For each of the R binding of step (1), we combine it with the single binding of step (2), and submit a
query to cs to obtain a binding for Rest2. For example, for the binding R = `employee' we send the
following query to cs:

<bind for cs f<bind for Rest2 Rest2>g>
:-<employee f<first name `Joe'>

<last name `Chung'>|Rest2g>@cs

4. Once MSI obtains bindings for Rest2 as well, it generates objects that follow the pattern of the head
of (R2). For example, considering the bindings we have illustrated so far, the MSI would generate the
object of Figure 4.3.

4.2.2 Other MSL features

In this Section we present various MSL features that enhance the capabilities of the language.
First, the keyword isatom may precede an object pattern of the MSL rule tail, forcing the pattern to

bind to atomic objects only.
Second, the pattern �hvariablei may appear in the head of an MSL rule, in place of an object pattern or

an object variable. For example, the rule

*JC :- <JC cs person f<name 'Joe Chung'>g>@source

declares that the mediator exports, as top-level objects, the source objects identi�ed by *JC. Intuitively,
* acts as a dereferencing operator. If the pattern �hvariablei appears nested inside an object pattern then
the objects identi�ed by hvariablei become subobjects of the objects \created" by the pattern. For example,
the rule

<JC cs person f*Rg> :- <JC cs person f<R L V>g>@source

declares that every object identi�ed by R must be exported as a subobject of a \cs person" object
identi�ed by corresponding bindings of JC.

4.3 Object-Identity-Based Information Fusion

In this section we explain how object fusion can be achieved with semantic object ids. We start with a
simple example that introduces semantic object-id's and demonstrates the basic principle of id based fusion.
We then present examples that illustrate a variety of fusion operations. These examples are not exhaustive;
they simply show how semantic ids can help in a variety of fusion scenarios.
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4.3.1 A Simple Example

Let us consider a mediator called s that exports objects with label techreport. The techreport objects
fuse information about reports that have the same report number and are exported by the sources s1 and
s2. In particular, if source s1 contains a report and its title, the exported techreport object contains the
corresponding title. If source s2 contains the postscript for the report, then a postscript subobject is
also included in the techreport. Note, the speci�cation of the techreport object appears in two rules.
Each rule describes the contribution of only one of the sources.

(MS3) (R3.1) <trep(RN) techreport f<title T>g>@s :-

<report f<report num RN> <title T>g>@s1
(R3.2) <trep(RN) techreport f<postscript P>g>@s :-

<report f<report num RN> <postscript P>g>@s2

The �rst rule declares that:

� if there is a pair of bindings t and r for variables T and RN (variables are identi�ers starting with a
capital letter) such that s1 contains a report top-level object that has a report num subobject with
value r and a title subobject with value t,

� then mediator s exports a techreport object, with object-id trep(r), that has a title subobject
with value t and a unique system-generated object-id.

The semantics of the second rule are de�ned accordingly. Notice how techreport objects at the mediator
are assigned the semantic object id trep(RN). ( We add the function symbol trep to the report number
obtained from the source to uniquely identify how this id was generated.) Observe that (MS3.1) does not
prevent the techreport with object-id trep(r) from having subobjects other than title, thus allowing the
second rule to add more subobjects to the same techreport objects. In general this is how object fusion
is achieved: MSL allows rules to incrementally and independently insert information into a semantically
identi�ed mediator object. In the examples that follow we will show how this feature provides signi�cant
power and 
exibility to mediator speci�cations. Incidentally, note that the simplicity of OEM facilitates
such id based fusion. In particular, if objects had rigid schemas it would not be as natural to combine object
fragments. If more than one sources contribute subobjects with same label we would have to introduce
multiple tuples for the same object. Furthermore, we avoid generating NULL values as it would be done in
an SQL system.

4.3.2 Merging Information with Incomplete Knowledge of the Source Contents

It is not necessary to know the structure of the source reports in order to fuse them. Speci�cation (MS4)
demonstrates that we can group all information about reports into techreport objects, without knowing
the structure and contents of the reports subobjects.

(MS4) (R4.1) <trep(RN) techreport V>@all :- <report V:f<report num RN>g>@s1
(R4.2) <trep(RN) techreport V>@all :- <rep V:f<report num RN>g>@s2

Variable V binds to set values that contain all subobjects of report provided that at least one of the
subobjects has the label report num. Then, every object of the set value becomes a subobject of the
techreport, regardless of whether the other source also provides the same piece of information.

Note, OEM provides the 
exibility to integrate information without having to worry about the presence
of subobjects with same label. In some cases this may be desirable. For instance, say each source contains
a di�erent title for the same report. We may want to record these two potentially di�erent titles in the
fused object. In other cases, however, we may wish to eliminate one of the titles. We will show how this can
be done in Section 4.3.5. Fortunately, the OEM model does not force a decision on us: the person writing
the mediator speci�cation can decide if redundancies or inconsistencies are allowed.
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4.3.3 Removing Redundancies

The example of Section 4.3.2 does generate one redundancy that is not very useful: each techreport object
contains two report num subobjects with identical values but di�erent object-id's. This redundancy can be
eliminated as shown by mediator (MS5). It assigns the semantic object-id rnOID(RN) to the report num

subobjects with value RN. In this way, the report num subobjects that have the same value are assigned the
same object-id and hence they degenerate into the same report num object.

(MS5) (R5.1) <trep(RN) techreport f<rnOID(RN) report num RN> <O1 L1 X1>g>@nored :-

<report f<report num RN> <O1 L1 X1>g>@s1 AND NOT L1=report num

(R5.2) <trep(RN) techreport f<rnOID(RN) report num RN> <O2 L2 X2>g>@nored :-

<report f<report num RN> <O2 L2 X2>g>@s2 AND NOT L2=report num

Note, the variables L1 and L2 that appear in label positions allow the patterns <O1 L1 X1> and <O2 L2

X2> to match with any subobject of the reports of s1 and s2, provided that L1 and L2 are not equal to
report num. Then, the subobjects that are bound to <O1 L1 X1> or <O2 L2 X2> become subobjects of the
mediator techreports. ( If we did not have explicit NOT conditions the pattern <O1 L1 X1> and <O2 L2

X2> would also match with report num objects.)

Comparison of object-id based fusion with outerjoin Outerjoin has also been suggested as a way
to join information from sources that may or may not contribute to the joined object. Using outerjoin we
could, in a single rule, create a techreport virtual object with report number r if there is a report with
number r at s1 or s2. However, we believe that the object-id based fusion scheme we illustrated above is
more powerful. In particular, with object-id based fusion we can easily join objects from the same source.
The need for this arises if, for example, s1 has multiple report objects that refer to the same real-world
report. To do the same with outerjoin, we would have to know the maximum number of outerjoins that
we may need to apply, something that is data-dependent. Furthermore, object-id based fusion is a more
modular solution: If we want to add one more source we simply introduce one more rule.

4.3.4 Blocking Sources and Resolving Inconsistencies

More than one source may o�er information about the same real world entity. If all sources o�er roughly
the same information we may want to avoid retrieving information about an entity from some source(s) if
some other source provides us enough information about this entity. Information sources that charge their
users make this scenario particularly important; if we can retrieve enough information from some \cheap"
source, we want to avoid retrieving similar information from an \expensive" source. In this section we show
speci�cations where the presence of some data \blocks" the retrieval of other data. In the next subsection
we show that MSL's 
exibility allows blocking at various levels of granularity, from blocking entire objects
to selectively blocking subobjects that meet various conditions.

As our example, assume that source s1 can be accessed for free whereas s2 charges a fee for providing
information. In this case, we may wish to have mediator save, de�ned by (MS6), that collects from s2 only
information about reports that do not appear in s1.

(MS6) (R6.1) <trep(RN) techreport V>@save :- <report V:f<report num RN>g>@s1
(R6.2) provides(RN) :- <report f<report num RN>g>@s1
(R6.3) <trep(RN) techreport V>@save :-

NOT provides(RN) AND <report V:f<report num RN>g>@s2

Rule (R6.1) declares that every report of s1 becomes a techreport of save. Then (R6.2) collects in
relation provides the report numbers RN of all reports that come from s1. In general, MSL speci�cations
may de�ne and use relations that serve as \intermediate" results. We could as well use OEM objects for
storing intermediate results, but we believe that sometimes the use of relations makes the speci�cation
clearer.
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Finally, (R6.3) exports a techreport for every report of s2 unless the report appears in the relation
provides. Note, we use traditional \negation by failure" semantics. In e�ect, the relation provides prevents
(or blocks) s2 from exporting a report via the third rule if the \same" report has been exported by s1 via
the �rst rule. In Section 5.6.3 we demonstrate techniques used by the query optimizer that prevent the
mediator from retrieving \blocked" data from the wrappers.

There are many variations to the blocking scheme of (MS6). Just to illustrate one, let us assume that if
s1 does not provide author and title for a report then we retrieve this report from s2 also. In this case,
all we have to do is replace (R6.2) with the following rule.

provides(RN) :- <report f<report num RN> <title T> <author A>g>@s1

Calculated Priorities So far, we have assigned priorities in a static way. For example, source s1 has
priority over s2. However, the computing power of MSL allows the expression of arbitrarily complex blocking
schemes. For example, we may assign priorities to the various pieces of information in a dynamic way. The
implementor may provide an external predicate called calc that calculates how credible are the pieces of
information provided by each source. (We have described in [PGMU96] how external predicates interface
with MSL.) To illustrate this, let us assume that reports with most recent date subobject are given the
highest priority, i.e., if there are multiple report objects that refer to the same report we retain only the
report with the most recent date. The predicate calc is given the value of the date subobject and returns
an integer that is the priority P of the speci�c piece of information.

(MS7) (R7.1) <trep(RN) techreport V>@med :- <O report V:f<report num RN>g>@s1
AND NOT notbest(O,RN)

(R7.2) <trep(RN) techreport V>@med :- <O report V:f<report num RN>g>@s2
AND NOT notbest(O,RN)

(R7.3) provides(O,RN,P) :- <O report f<report num RN> <date D>g>@s1
AND calc(D,P)

(R7.4) provides(O,RN,P) :- <O report f<report num RN> <date D>g>@s2
AND calc(D,P)

(R7.5) notbest(O1,RN) :- provides(O1,RN,P1) AND provides(O2,RN,P2) AND P1<P2

If relation provides(O,RN,P) contains the tuple (o; r; p), then there is a report object identi�ed by o
(the object-id indicates whether it comes from s1 or s2) that has report number r and priority p. If
notbest(O1,RN) contains a tuple (o1; r) then there is a report object identi�ed by o2 that has the same
report number r with o1 and greater priority p2 than the priority p1 of o1. Hence, o1 is not the most
credible report object for the speci�c report. Rules (R7.1) and (R7.2) do not retrieve report objects whose
object-id's O appear in the notbest relation.

4.3.5 Removing Inconsistencies Using Fine-Grained Blocking

In Section 4.3 we showed that speci�cations such as (MS3) may cause the same techreport to have multiple
title objects. In this section we show that using negation and label variables we may block subobjects that
come from one source (presumably the less reliable source) in favor of subobjects that come from the other
source (the more reliable). In e�ect, we use �ne-grained blocking, i.e., blocking where we individually access
each subobject (using label variables) and decide whether it must be blocked or not.

For example, (MS8) resolves all inconsistencies in favor of s1, i.e., if s1 provides some report subobject
with label F, then s2 should not provide a subobject with the same label. Note, in this example we assume
that no report has two subobjects with the same label and di�erent values.7

(MS8 (R8.1) <trep(RN) techreport f<field(RN,F) F V>g>@med :-

<report f<report num RN> <F V>g>@s1

7In [PGM] we generalize MSL to handle the case where multiple subobjects with the same label exist.
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(R8.2) provides(RN,F) :- <report f<report num RN> <F V>g>@s1
(R8.3) <trep(RN) report f<field(RN,F) F V>g>@med :-

NOT provides(RN,F) AND <report f<report num RN> <F V>g>@s2

The subgoal NOT provides(RN,F) blocks (R8.3) from exporting any subobject with label f of a report

identi�ed by r if the tuple (r; f) is in provides, i.e., if data about the f subobject of the report with number
r can be found in s1.

4.3.6 Handling References

When we import objects from sources and fuse them into mediator objects we must be careful with the
object references that are imported. For example, assume that reports stored in s1 have references to
related reports, also stored in s1. From an OEM point of view, each report contains a subobject related,
the value of which is a set containing the s1 object ids of the referenced reports.8 If we are not careful
when we import related into the mediator, we will end up with object references that point to the original
objects of s1 and not to the corresponding fused techreport objects.

In this section we show two ways to resolve this problem. The �rst solution is more e�cient but assumes
that we know which are the subobjects that contain references to fused objects (the subobject related in
our example.) The second one is less e�cient but it works even if we do not know which objects contain
references. The latter solution is very useful when we integrate structures that are deeply nested and we do
not have complete information about their structure (as is the case with World-Wide-Web).

The �rst solution is implemented by (MS9). Rule (R9.1) puts in the techreport objects all information
of the source reports with the exception of the related subobject. Rule (R9.2) creates a related object
and inserts it into the appropriate techreport. For simplicity we omit the corresponding rules for s2.

(MS9) (R9.1) <trep(RN) techreport f<L X>g>@all-with-ref :-

<report f<report num RN> <L X>g>@s1 AND L!=related

(R9.2) <trep(RN) techreport f<related f<trep(REL) techreport fg>g>g>@s1
<report f<report num RN> <related f<report f<report num REL>g>g>g>@s1

Our second solution does not rely on knowing what subobjects may refer to s1 objects that are fused.
The basic idea is to create two virtual objects for each techreport. The �rst virtual object (as before) has
the id trep(RN) and its related subobject contains s1 object-ids. The second mediator object contains the
same information except that its object-id is identical to the object-id in s1. The �rst copy is needed for
fusion, since its semantic id is used to combine fragments from other sources. The second copy is simply
used so that ids in the �rst are to valid mediator objects.

(MS10) (R10.1) <trep(RN) techreport f<L X>g>@all-with-ref :-

<report f<report num RN> <L X>g>@s1
(R10.2) <O techreport V>@all-with-ref :-

<techreport V:f <report num RN> g>@all-with-ref
AND <O report f<report num RN>g>@s1

The �rst rule (and the analogous one for s2 that is not shown) generates the �rst copy of each techreport

fused object. (Note that these objects contain s1 ids.) The second rule generates the copy objects and simply
changes the id. If fused objects are expected to contain s2 ids, then another rule would be needed to generate
virtual copies with s2 ids. Note that we only create copies of the top-level techreport objects; these \reuse"
the same subobjects, such as title. Furthermore, the copies are virtual and hence not materialized at the
mediator unless necessary.

8OEM allows top-level objects to be subobjects as well.
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4.3.7 Other Types of Fusion

We have only presented a few representative fusion examples. There are of course many others. In closing
this section we brie
y comment on some interesting cases.

� Fusion with Canonical Forms. In our examples we assumed that source objects had some semantic
key (like report num) that could be used for fusion. Often keys exist but are represented di�erently
at sources. As a trivial example, phone number may uniquely identify customers, but one source may
represent a phone number as (415) 555-1111 whereas another source may represent the same number
as +1.415.555.1111. In these cases, key values can be mapped (via external predicates) to a canonical
form that can then be used to form the semantic id.

� Fusion with No Keys. Often, when dealing with heterogeneous and autonomous sources, objects have
no well de�ned keys. So, to decide if two customer records represent the same person, we need to
apply a complex function that compares their names, addresses, and phone numbers, say. The output
is not a canonical key, but simply a fused record that somehow combines the information. We can
use MSL (and external predicates) to de�ne this type of fusion, but it introduces many problems that
are beyond the scope of this thesis. Just to mention one, the fusion process can have an unbounded
number of steps, each quite expensive. That is, after we fuse two customer records, we have generated
a new record. Now this record must be compared against all other customer records for a potential
match, generating even more records.

� Complex Fusion. When fusing fragments into a single mediator object, we have used relatively simple
schemes to combine the data, for example, selecting one title over another. It is of course possible
to have more complex functions. For instance, if each fragment contains a temperature subobject, we
could compute an average temperature for the fused object. Such functions involve aggregation and
are not considered by MSL, which is a purely conjunctive language.

As a �nal comment on MSL, we stress that MSL is not a language for the end-user. It is a language for
succinctly describing mediators using very few primitives.

4.4 Introduction to Semantics of MSL Speci�cations

In this section we present the model-theoretic semantics of MSL. Besides its usefulness in formally de�ning
the meaning of mediator speci�cations and queries, they also show the connection between MSL and �rst-
order logic and they provide insight into the implementation of MedMaker that will be discussed in the next
chapter.

The formal semantics is based on the intuition that OEM and MSL are essentially a form of logic that
has been appropriately reformulated in order to express object nesting, object identity, and the combination
of schema and data information. We substantiate this intuition by reducing OEM data and MSL mediator
speci�cations9 and queries into �rst-order formulas. In particular, we �rst describe how OEM objects can
be reduced to an equivalent relational representation that is based on �rst-normal-form relations. Then,
we show how mediator speci�cations can be reduced to datalog rules that contain function symbols. The
minimal model of the datalog rules describes the relational representation of the object structure that is
exported by the mediator. The same idea applies to the speci�cation of query semantics, since we can view
queries as mediator speci�cations that de�ne the query result.

The transformation of an arbitrary MSL speci�cation to a logic program is accomplished in two steps:

1. we reduce every MSL rule into one or more normal-form MSL rules, that is, MSL rules conforming to
the following restrictions:

9We assume that the MSL speci�cation satis�es the obvious safety and typing constraints, such as \no object variable can
appear where a non-object variable is expected." A complete list of the safety and typing restrictionsappears in Appendix B.0.1.
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(a) they contain only 3-�eld patterns that explicitly specify the object-id, label, and value of the source
and mediator objects. ( In accordance with the simplifying assumption set forth in Chapter 3 we
omit the type �eld.)

(b) they do not contain object variables or rest variables such as the variables Rest1 and Rest2 of
med's speci�cation (see Section 4.1, page 4.1.2).

A formal syntax of MSL normal form appears in Appendix A.

2. we reduce every normal-form MSL rule into one or more datalog rules.

Section 4.4.1 provides the rules for computing the relational representation of the object structure ex-
ported by an OEM source (i.e., translator or mediator). Section 4.4.3 illustrates the reduction of a normal-
form MSL rule to datalog rules. Section 4.4.4 illustrates the reduction of an MSL rule to a normal-form
MSL rule. The full algorithm for reducing a MSL rule into a normal-form MSL rule will be presented in
Section 5.5 because it is actually used by MedMaker.

4.4.1 Relational Representation of OEM Objects

We can represent the OEM object structure that is exported by an OEM source using three relations,
named top, object , and member . For example, Figure 4.5 demonstrates the relational representation of part
of the object structure of translator cs (see Figure 4.1 for the corresponding part of the object structure).
The relational representation of an object structure can be derived mechanically by the following three
straightforward rules:

1. If at the source s there is an object with object-id oid , label l, and atomic value (i.e., non-set value) v,
then we introduce a tuple

object(s; oid ; l; v)

2. If at the source s there is an object o with object-id oid , label l, and a set value that consists of the
objects o1; o2; : : : ; on that are identi�ed by oid1; oid2; : : : ; oidn then we introduce the tuples

object(s; oid ; l; set)
member(s; oid ; oid1)
member(s; oid ; oid2)
...

member(s; oid ; oidn)

where set is a special value indicating that the object identi�ed by oid is a set object.

3. If at the source s the object identi�ed by oid is a top-level object, we introduce the tuple

top(s; oid )

We treat structured object-id's in the same way that we treat any object-id. For example, if at source src
the object identi�ed by h1(a52,'Smith') is a member of the object identi�ed by h2('Jones')we introduce
the tuple:

member(src; h2(0Jones0); h1(a52;0 Smith0))

The above rules can be used in reverse as well, i.e., given the relational representation of a set of sources
we can use the above rules to derive the OEM object structures of the sources. Note that the relational

27



top
SRC OID

cs &e1

cs &e2

cs &s3
...

object
SRC OID Label Value

cs &e1 employee set
cs &f1 first name 'Joe'

cs &l1 last name 'Chung'

cs &t1 title 'professor'

cs &rep1 report to 'John

Hennessy'

cs &e2 employee set
cs &f2 first name 'John

cs &l2 last name Hennessy'

cs &t2 title 'chairman'
...

member
SRC OID SubOID

cs &e1 &f1

cs &e1 &l1

cs &e1 &t1

cs &e1 &rep1

cs &e2 &f2

cs &e2 &l2

cs &e2 &t2
...

Figure 4.5: Relational representation of cs's exported object structure

representation must satisfy obvious constraints (fully described in Subsection 4.4.2) such as the constraint
that the existence of a tuple

member(s; oid ; oid1 )

implies the existence of a tuple

object(s; oid ; l; set; set)

for some label l. Indeed, the mediator speci�cation must be such that for every query Q the relational
representation of the answer satis�es the constraints for being reducible to an OEM answer object. If the
required constraints are not satis�ed the system informs the user of the constraint violation. External
predicates and predicates exported by the sources and/or the mediator can also be incorporated in the
relational representation of sources.

4.4.2 Constraints on the Relational Representation of an OEM Object Struc-

ture

The top, member , and object relations that represent an OEM object structure must satisfy the following
constraints:

1. The \source" and \object-id" attributes of the object relation constitute a key for the tuples of object.

2. If there is a tuple
member(s; oid ; oid1)

there must also be a tuple
object(s; oid ; l; set)

3. If there is a tuple
object(s; oid ; l; c)

where c 6= set , then there is no tuple

member(s; oid ; oid1)
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4. If there is a tuple
member(s; oid ; oid1)

there is also a tuple
object(s; oid1; l; v)

4.4.3 Example of Reducing Normal-Form MSL Rules to Logic Rules

Now we illustrate how a normal-formmediator speci�cation rule can be reduced to a Datalog rule such that
the relational representation of the OEM structure created by the MSL rule is identical to the relations
computed by the Datalog rule.

For example, consider the following speci�cation of mediator simple that for every top-level object of
source src, with object-id O and label L, exports a \top-label" object whose value is the binding of L and
whose object-id is the binding of O. Note that the following rule happens to be a normal-form rule since it
uses only 3-�eld object patterns, does not contain object or rest variables, and the value variable V appears
only once.

<O top label L>@simple :- <O L V>@src (1)

The \informal" semantics of MSL described in Section 4.1 requires that �rst we obtain bindings for the
variables that are used in the head of the MSL rule. We formalize in logic our notion of obtaining bindings
for L and O by introducing a predicate bind that \collects" valid pairs of bindings for the pair L and O. In
general, bind collects bindings for the variables that appear in the head of the MSL rule.

A logic rule that corresponds to the tail of the MSL rule de�nes the tuples of bind :

bind (O;L) : �top(src; O) ^ object(src; O; L; V )

The tail of the above logic rule was created by applying the following two straightforward principles:

� if the MSL pattern

<hoidi hlabeli hvaluei>

appearing in the MSL rule tail refers to source hsrci,10 and hvaluei is either a variable or a constant,
we put in the tail of the datalog rule the literal

object(hsrci; hoidi; hlabeli; hvaluei)

� if the MSL pattern

<hoid i : : :> @hsrci

appears in the MSL rule tail, we put in the tail of the logic rule's tail the literal

top(hsrci; hoidi)

Going back to the running example, now that we have obtained bindings for the variables that appear
in the head, we write the rules that create the (relational representation) of the object structure of simple.

top(simple; O) : �bind (O;L)
object(simple; O; top label; L) : �bind (O;L)

The above rules were created by applying two straightforward principles for reducing the MSL rule head
in datalog rules:

10Note, the pattern either is followed by a @hsrci or is nested inside a pattern that is followed by a @hsrci
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� If the MSL pattern

<hoidi hlabeli hvaluei>

appears in the head of the mediator speci�cation of hmednamei, and hvaluei binds to constants only,
we introduce the logic rule11

object(hmednamei; hoidi; hlabeli; hvaluei) : �bind (: : :)

Note, the arguments of the predicate bind are the variables that appear in the head of the MSL rule.

� If the top-level object

<hoidi : : :>

appears in the head of the mediator speci�cation of hmednamei, then we introduce the datalog rule

top(hmedname i; hoidi) : �bind (: : :)

4.4.4 Example of Reducing MSL Rules to Normal-Form

Whenever a 2-�eld pattern appears at an MSL rule we have to replace it with a 3-�eld pattern. Let us
consider the following mediator fl that exports an object \top label" for every label of a top-level object
that it �nds at source src.

<top label L>@fl :- <O L V>@src

The above rule is transformed into the normal-form MSL rule

<G top label L> :- <O L V>@src AND genoidL!G(L,G)

The type of the generated \top label" objects is string because the values of the \top label" objects
come from labels. The object-id �eld is �lled with a variable G. Then, for every valid binding of the variable L
we have to generate one binding of G. This is accomplished by the predicate genoidL!G that appears above.
The predicate genoidL!G(l; g) associates a unique g with each l.

Indeed MedMaker actually converts the MSL rules and the query into normal form before it matches
them. Section 5.5 discusses the details of the conversion.

4.5 Related Work

We described in Chapters 1 and 3 the OEM features that make it suitable for integration of heterogeneous
information systems. Because of OEM, MSL mediator speci�cations tend to be short and simple and
avoid questions such as \what is the class of the view objects?", that complicate object-oriented view
de�nition [Rud92, AB91]. In spite of its simplicity, MSL is quite powerful. For instance, it allows the
construction of arbitrarily complex object structures (which XSQL [KKS92] does not) and allows creation
and manipulation of object-id's (ODMG's query language [Cat94], for instance, does not allow explicit
creation and manipulation of object-id's).

11The normal-form assumption guarantees that hvaluei does not bind to a set of objects, and thus it can be safely used in
the Datalog rule.
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MSL and OEM can be seen as a form of �rst-order logic. Indeed, we borrow many concepts from logic
oriented languages such as datalog [Ull88, Ull89], HiLog [CKW93], O-Logic [Mai86], and F-Logic [KL89].
HiLog �rst proposed { under a logic framework { the idea of mixing schema and data information.12 It also
demonstrated the reduction of nested structures into �rst-order structures, a feature of OEM and MSL that
is illustrated in [PGM]. Nevertheless, we should not see MSL as a front-end to a datalog system (the next
Chapter will show the extra di�culties.)

Recently SchemaSQL [LSS96] extended SQL so that data and schema information can be simoultaneously
accessed and manipulated. It is interesting to note that, unlike SchemaSQL, the simplicity of OEM and MSL
allow the simoultaneous access of schema and data by introducing a single feature: variables in the label
�elds. (Of course this does not reduce the value of SchemaSQL, which solves the problem while being
compatible with SQL.)

MSL's handling of semantic object-ids is based on a particular use of Skolem functions as �rst introduced
in object-oriented systems in [Mai86] and re�ned in [KKS92, CKW93, KL89]. Automatic creation and
manipulation of object-id's based on Skolem functors are considered in depth in [HY90]. It is observed in
[AK89] that object-id based set formation (as provided by the object-id based fusion) can replace explicit
(LDL-like [NT88]) grouping operators. They also advocate a ptime sublanguage by prohibiting recursion
through object creation. The architecture we use prevents such a potentially dangerous/expensive form of
recursion: objects are created in a mediator based on the objects in lower level sources (that can themselves
be mediators).

A very important di�erence between MedMaker and other integration systems is that MedMaker can
integrate conventional well-structured databases that have a static schema and at the same time can integrate
sources that do not have a regular schema, or sources that have an often-changing schema. The ability to
integrate all kinds of sources is due to:

1. OEM's absence of schema, which allows the intuitive representation of heterogeneous, semistructured,
and changing information.

2. MSL's ability to exploit regularities and complete knowledge of the schema (the example of Section 5.1.1
demonstrated the tradeo� between performance and partial knowledge of the schema).

Though systems that integrate well-structured conventional databases exist (e.g., [A+91, K+93, BLN86,
LMR90, T+90, Gup89, FLNS88, ACHK93]) and recently systems for the integration of sources with minimal
structure have also appeared [Fre, RJR94, S+93], we do not know of view de�nition based systems ([A+91,
Ber91, CWN94, FLNS88] and others) that handle the whole spectrum of information sources simultaneously,
and with MSL's 
exibility.

Note, MedMaker performs integration by \working" with the structures of the source objects. Semantic
information is e�ectively encoded in the MSL rules that do the integration. There are many projects that
follow MedMaker's \structural" approach [Ber91, DH86, B+86], as well as many projects that follow a
semantic approach [HM93, H+92]. We believe that the power of the structural approach, along with the

exibility, generality, and conciseness of OEM and MSL make the \structural" approach a better candidate
for the integration of widely heterogeneous and semistructured information sources.

12[KLK91] has also proposed an interesting mixing of schema and data information for the relational data model.
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Chapter 5

Implementation and Algorithms of

MedMaker

MedMaker's architecture (Figure 5.1) was informally introduced in Section 4.2. In this chapter, we discuss
in detail each component of the architecture and its role in query processing.

For readability, we start by explaining query processing for the relatively simpler case of non-fusion
mediators. For these mediators we do not need the normalizer module that appears on the top of our
architecture. We �rst explain how the Query Decomposition and Algebraic Optimization (QD&AO) module
matches each query condition with each rule and generates a datamerge program, i.e., a rewriting of the
query that refers directly to the wrapper objects instead of the mediator objects.

The optimizer converts the datamerge programs into executable plans, called datamerge graphs, that
specify the queries that will be sent to the sources in order to retrieve the objects required by the datamerge
program, the merging of query results, and so on. Finally, the datamerge engine executes the datamerge
graphs.

Query processing for fusion mediators poses the extra di�culty that multiple rules may \contribute"
to the same mediator object. This property signi�cantly complicates the condition/rule matching. The
implemented solution consists of two steps: First, the normalizer reduces the query and the mediator spec-
i�cation into normal form (recall Section 4.4.) Using the normal form, the QD&AO implements the query
condition/rule matching process as an extension of resolution and uni�cation in �rst order logic.

In Section 5.1 we informally describe the QD&AO algorithms for speci�cations that do not involve
object fusion. Section 5.2 describes the structure of the datamerge graphs and the datamerge engine.
Section 5.3 describes the cost-based optimizer. Section 5.4 describes the additional challenges posed by
object fusion and formally presents the uni�cation algorithm employed for processing normal form queries
and conditions. Section 5.5 formally describes the reduction of MSL into normal form. Section 5.6 describes
a set of optimizations that are speci�c to the fusion problem. Finally, Section 5.7 compares MedMaker's
query processing techniques to related query processing and optimization technologies.

5.1 Query Decomposition and Algebraic Optimization

The QD&AO matches the query against the mediator speci�cation rules and rewrites the query so that
references to the virtual mediator objects are replaced by references to source objects. The result is a logical
datamerge program that is a set of MSL rules specifying the result. In Section 4.2.1 we illustrated the view
expansion and algebraic optimization process. There, expression Q2 was the logical datamerge program. In
the rest of this section we explain the QD&AO process in more detail. In general, the QD&AO formulates
the logical datamerge programs in a sequence of the following steps:

32



View Expander 

query

  & Algebraic Optimizer

Cost-Based Optimizer

Datamerge Engine

logical datamerge program

mediator specification

answer

physical datamerge graph

Normalizer

Figure 5.1: The full architecture of MSI

1. First it matches a query tail condition c with speci�cation rule heads. The successful matches result
in expressions called uni�ers. Intuitively, our uni�ers describe the match between the condition and
the rule, the conditions that must be pushed to the sources, and other information necessary for the
rewriting of the query. Note, they can be viewed as extensions of the uni�ers used in resolution of �rst
order clauses [GN88].

2. Then for every uni�er a logical datamerge rule is formed. The rule head is formed by applying the
uni�er to the query head, while the datamerge rule tail is formed by

(a) substituting the condition with the speci�cation rule tail, and

(b) applying the uni�er to the new query condition

3. Steps 1 and 2 are repeated until no condition that refers to the mediator is left. The resulting rules
are called logical datamerge rules. Their union describes the result of the query without referring to
the mediator's virtual objects.

In the absence of recursion this process terminates. In the presence of recursion more complex resolution
strategies and termination criteria are required [GN88] (not implemented yet.) Also, note that the matching
of query conditions with rules corresponds to resolution of Horn clauses, whereas the uni�ers that we use
are extensions of uni�ers of �rst-order clauses.

For example, consider the query Q1 (Section 4.2.1) and the speci�cation MS1 of med which are repeated
below:

(MS1) <cs person f<name N> <relation R> Rest1 Rest2g>@med
:- person f<name N> <relation R> | Rest1g>@whois

AND decompose name(N, LN, FN)

AND <R f<first name FN> <last name LN> | Rest2g>@cs

(Q1) JC :- JC:<cs person f<name 'Joe Chung'>g>@med.

The match1 results in the uni�er �1 where

�1 =

�
N 7! 0Joe Chung0;
JC 7! < cs person f< name 0Joe Chung0 > < relation R > Rest1 Rest2g >

�

1Before we match a query with one or more rules we must rename the variables that appear in the query and the rules, so
that no two rules, or a query and a rule have identically named variables.
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The above uni�er consists of two mappings. The application of �1 to the query head causes the substitution
of JC by the structure following the ). Similarly, the application of �1 to the mediator rule tail causes the
substitution of N by 'Joe Chung'. Combining the transformed query head with the transformed mediator
rule tail we obtain the logical datamerge rule Q2.

In general, a uni�er may contain any number of mappings and/or de�nitions. When the QD&AO matches
a query condition with a rule head it generates all uni�ers � such that

1. If we apply the mappings to the query condition and the mediator rule head, the transformed query
condition pattern is contained in the rule head pattern. In the example, the transformed query condition
<cs person f<name 'Joe Chung'>g>2 is contained in the transformed rule head <cs person f<name
'Joe Chung'> <relation R> Rest1 Rest2g> because they have the same label cs person and every
subobject pattern of the query condition pattern (i.e., the pattern <name 'Joe Chung'>) is identical
to a subobject pattern of the rule head. Containment guarantees that any mediator object generated
by the transformed rule satis�es the query condition pattern.

2. There is a mapping for every object variable, \rest" variable, and value variable that appears in the
head of the query. The mapping provides the expression that will replace the variable in the datamerge
rule. For example the mapping of JC indicates that the object variable JC must be replaced with the
structure <cs person f<name 'Joe Chung'> <relation R> Rest1 Rest2g>.

Note, QD&AO does not really generate all possible uni�ers, since some of them are trivial rewritings of
other uni�ers. For example, if we have a uni�er � = [V1 7! V2] it is useless to generate a uni�er �0 = [V2 7! V1].
The latter one will generate exactly the same datamerge rules with the former one module variable renaming.

5.1.1 Pushing Conditions to the Sources

The QD&AO pushes conditions such as \the name must equal 'Joe Chung'" to the corresponding source.
Indeed, QD&AO pushes to the sources all conditions that can be pushed, thus implementing the (well-
known in relational DB's) \push selections down" algebraic optimization. In our environment with nested
objects that may have unknown structure, algebraic optimization is substantially more challenging than in
a relational environment. To illustrate this point, assume that the following query, which retrieves the data
of 3rd year students, is sent to mediator med (speci�ed by MS1):

S :- S:<cs_person {<year 3>}>@med

Mediator med joins data from two sources, and we cannot tell in advance whether the \year" object comes
from one source or the other. In particular, when we match the query against the mediator speci�cation MS1,
the <year 3> pattern can be \pushed" either into Rest1 or into Rest2. The two possibilities correspond to
the uni�ers �1 and �2:

�1 =

�
Rest1 7! f< year 3 >g;
S 7! < cs person f< name N > < relation R > Rest1 Rest2g >

�

�2 =

�
Rest2 7! f< year 3 >g;
S 7! < cs person f< name N > < relation R > Rest1 Rest2g >

�

The two uni�ers give rise to the following two rules which constitute the logical datamerge program.
Notice that we need two rules because it could be the case that both sources export year objects.

(Q11) <cs person f<name N> <relation R> Rest1 Rest2g>
:- <person f<name N> <dept 'CS'> <relation R> | Rest1:f<year 3>gg>@whois

AND decompose name(N, LN, FN)

2Before we check containment we reduce structures of the form \variable:pattern" to \pattern".

34



AND <R f<first name FN> <last name LN> | Rest2g>@cs
(Q12) <cs person f<name N> <relation R> Rest1 Rest2g>

:- <person f<name N> <dept 'CS'> <relation R> | Rest1g>@whois
AND decompose name(N, LN, FN)

AND <R f<first name FN> <last name LN> | Rest2:f<year 3>gg>@cs

Note, mappings of the form Rest1 7! f< year 3 >g cause the attachment of the conditions speci�ed
inside the fg to the speci�ed variable (Rest1 in the example). If Rest1 has already some conditions S
associated with it, QD&AO will produce the conjunction of the conditions S with the <year 3> condition.

If the desired year information is found at only one of the two sources, then the execution of one of
Q11 or Q12 is redundant. Indeed, had we put n subobject conditions on the \cs person" we would have to
emit 2n queries, most of which are probably redundant. We will describe in Section 5.6 solutions to this
unecessary exponential explosion problem.

Note, the examples of the previous paragraphs dealt with single condition queries. Nevertheless, the
demonstrated techniques can be easily extended for multiple condition queries. A more challenging task is
the extension to fusion mediators, i.e., mediators that use object-id based grouping. In Section 5.4 we show
how this extension can be easily handled by reducing both the query and the mediator speci�cation into a
normal form. Also note that we have not yet presented the complete algorithm for uni�cation. A complete
algorithm, which focuses on normal form MSL, will be presented in Section 5.4.2.

5.2 The Physical Datamerge Graph and the Datamerge Engine

The optimizer receives the logical datamerge program from the QD&AO and generates a datamerge graph.
This graph speci�es the queries to be sent to the sources as well as the mechanics for constructing the query
result from the results received from the sources. The graph is then executed by the datamerge engine,
which produces the query result.

In this section we illustrate datamerge graph execution through a detailed example. Our goal is not to
describe the datamerge engine in full detail (this is done in [Yer]), but rather to show the capabilities of our
datamerge engine and illustrate its similarity to relational database engines. As our starting point we use
logical datamerge rule Q11. From it, the optimizer may generate the physical datamerge graph of Figure 5.2.
This is a \data
ow" graph, where the nodes (rounded boxes) represent the operations to be executed by the
engine. The rectangles next to the arcs of the graph represent tables that 
ow during a sample run of this
graph. Typically, the tuples of the tables carry bindings for the logical datamerge program variables.

The datamerge engine executes the graph in a bottom-up fashion. First, the lower query node is executed.
This causes query Qw to be sent to source whois, obtaining bindings for N, R, and Rest1. Query Qw is provided
to the engine by the optimizer, and is de�ned as:

(Qw) <binding for whois f<binding for N N> <binding for R R>

<binding for Rest1 Rest1>g>
:- <person f<name N> <dept 'CS'> <relation R> | Rest1:fyear 3gg>@whois

The result of Qw is placed in the mediator's memory. In Figure 5.2 we show this result at the bottom of
the �gure. The numbers with a \x" pre�x represent object addresses in the mediator's memory. For example,
one result object is at address x032; it has label binding for whois and its value is a set containing the
objects at locations x036, x038 and x040. For readability, we omit the object-id and type �elds of the objects
from the �gure.

The query operator produces a table where each line contains the address of a top-level result object
(x032 and x056 in the example). For readability, we add a heading row to our tables (Result of Qw in this
case), but these do not appear in practice.

The table is passed to the next operator in the graph, an extractor node that extracts bindings of the
variables N, R, and Rest1 (from the \binding for whois" objects) and outputs a table of corresponding (N,
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Query(Qw,whois)

External Pred(decompose_name,1,1,keep,2)

Extractor(epw(N,R,Rest1),1)

Parameterized Query(Qcs(R,LN,FN),cs,2,keep,4,discard,5,discard)

Constructor(cp(N,R,Rest1,Rest2),1,2,3,4)

Nick Naive

Mary Web

student

staff

Nick Naive

{x0204,x0210}

{x0314}

Nick Naive student

MaryWeb

Result of Qc1

Naive Nick{x0204,x0210}
{x0314}

{x0204,x0210} x0102

Nick Naive student {x0204,x0210} {x0168}

Extractor(epc(Rest2),4)

Mary Web

Qw Result
x032
x056

N R Rest1

N

student
staff

R Rest1 LN FN

N R Rest1 Qcs Result

N R Rest1 Rest2

x056:<binding_for_whois, {x060,x062,x066}>

  x060:<binding_for_N, ’Mary Web’>

  x062:<binding_for_R, ’staff’>

  x066:<binding_for_Rest1, {x0314}>

    x0314:<year, 3>

Result of Qw

    x0204:<dept, ’Simple Studies’>

    x0210:<year, 3>

  x036:<binding_for_N, ’Nick Naive’>

  x038:<binding_for_R, ’student’>

  x040:<binding_for_Rest1, {x0204,x0210}>

x032:<binding_for_whois, {x036,x038,x040}>

x0102:<binding_for_Rest2, {x0168}>

  x0168:<telephone, 1234567>

Figure 5.2: A physical datamerge graph

R, Rest1) tuples. The extractor node has two parameters: the �rst is the optimizer provided object pattern
epw, de�ned by

<binding for whois f<binding for N N> <binding for R R> <binding for Rest1 Rest1>g>

epw indicates where the desired bindings are found in the result objects; the second parameter (1) indicates
the column of the input table that contains the objects that are the subject of the extraction. Again, the
heading row in the output table is only for readability. Also for reabability, in the N and R columns we write
strings, while in reality we have pointers to the strings. Similarly, in the Rest1 column we write the full sets
while in reality the column contains pointers to the indicated sets.

Then, for every tuple, the external pred(-icate) node invokes the predicate decompose name. The other
parameters for this node indicate: the number of arguments for decompose name (1); the column of the
input table containing the one input parameter (1); whether the input column is kept in the output table;3

and the number of result arguments from decompose name (2).
The next node is the parameterized query node. For each tuple of its input table, this node generates

a query for source cs requesting bindings for Rest2 that are needed to construct �nal result objects. The
query to send is de�ned by Qcs which is provided by the optimizer along with the graph:

3As opposed to extractor nodes that always dicard their input column (after using it).
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(Qcs(R,LN,FN)) <binding for Rest2 Rest2>

:- <$R f<last name $LN> <first name $FN> | Rest2g>@cs

The values for query parameters $R, $LN, and $FN are taken from the 2nd, 4th, and 5th columns of the
incoming table. (The keep and discard parameters again indicate if the inputs columns remain in the
output table.) Thus, for our sample data, two queries Qcs1 and Qcs2 are emitted:

(Qc1) <binding for Rest2 Rest2>

:- <student f<last name 'Naive'> <first name 'Nick'> | Rest2g>@cs
(Qc2) <binding for Rest2 Rest2>

:- <staff f<last name 'Web'> <first name 'Mary'> | Rest2g>@cs

Let us assume that Qc1 returns only the x0102 \binding for Rest2" object and Qc2 does not return
anything. In this case, the parameterized query node outputs the table shown in Figure 5.2. After the upper
extractor node extracts Rest2 bindings from the results of the parameterized query node, the constructor
node is activated and creates the �nal result objects. The form of these objects is de�ned by the pattern
cp(N,R,Rest1,Rest2) where

cp(N,R,Rest1,Rest2) = <cs person f<name N> <relation R> Rest1 Rest2g.

For each row in the input table, the constructor operator takes a row (1st, 2nd, 3rd, and 4th values),
assigns them to the N, R, Rest1, and Rest2 values in cp, creating one of the �nal result objects.4

Through this example we have illustrated how the entire mediation process can be described by a low
level executable graph. The nodes of our datamerge graphs are the \machine language" of MedMaker which
is run by our implementation of the datamerge engine. Indeed, it is interesting to compare them with
relational algebra expressions: The query node is responsible for obtaining information from remote sites
(unlike relational databases where all information resides at the same site), the extract node is reponsible for
converting the OEM format into relational format, and the construct node translates the relational format
into OEM. The other nodes operate on relations and produce relations as it would be done in a relational
system.

In particular, the engine's design includes select, project, join (implemented by nested loops), cartesian
product, union, external predicate, and �lter nodes. The latter is the special case of external predicate,
where the external predicate5 has no output and it merely checks whether its input satis�es an implementor
provided function. The engine o�ers both the �lter node and the external predicate node because it is easier
for the mediator implementor to interface a function with no output into a �lter node than in an external
predicate node.

5.3 Cost-Based Optimization

There is generally more than one physical datamerge graph that correspond to a logical datamerge program.
The optimizer has to select the \optimal" graph. However, optimization in distributed and autonomous
systems, such as TSIMMIS, is much harder [LOG93] than optimization in a conventional database because
optimization criteria are di�erent and cost estimation is harder. (See Section 5.3.1) for a discussion on these
issues.) Furthermore the sources have limited and di�erent query capabilities. This makes optimization even
harder because a plan which would be optimal, if the sources had full capabilities, may involve emitting to
the sources unsupported queries.

MedMaker does not handle the problem of limited and di�erent capabilities. Instead, its cost-based
optimizer formulates an \optimal" plan assuming that the sources have full query capabilities. If a query

4Our current implementation does not have a duplicate elimination feature, though the MSL semantics describe duplicate
elimination in the OEM context.

5The current implementation does not include external predicate.
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emitted by MedMaker is not directly supported by the underlying source the wrapper of this source may
indirectly support the query using techniques described in Chapter 7. Apparently, this is not a complete
solution of the problem; solutions on this problem are discussed in Chapter 8.

The cost-based optimizer uses simple heuristics to guide datamerge graph selection. This seems to
work well when the alternative graphs are relatively simple (few joins) and have important \qualitative"
di�erences; e.g., the optimal graph uses available indexes at sources while the alternatives do not. However,
they do not perform well in the presence of large joins or complicated join hypergraphs. Hence, we do not
consider the cost-based optimizer to be a contribution of our mediator work. However, we include it in the
presentation because it is part of the MedMaker system and it also gives us the chance to point out future
work in optimizers for mediator systems.

In Section 5.3.1 we discuss the main issues in heterogeneous cost-based optimization. In Section 5.3.2 we
discuss the cost-based optimizer of MedMaker.

5.3.1 Issues in Cost-Based Optimization

Query optimization in information integration systems such as TSIMMIS is harder than optimization in
conventional centralized systems. One of the hardest problems is the di�erent and limited capabilities of
the sources. Due to the complexity of this problem we independently discuss it in Chapters 7 and 8. The
following issues should not be ignored either:

� Optimization Criteria: Relational system's optimizers attempt to minimize the time and resources
needed for constructing the full query result. Though the subsequent sections focus on the same
optimization criterion we should note that the predominant criterion could be the minimization of the
�nancial cost of retrieving the information, the minimization of the \response time to the next piece of
information", or the minimization of the time required for retrieval of a part of the answer. The latter
two are especially important when the information is accessed by browsing.

� Statistics and Cost Estimation: Relational optimizers have access to statistics such as cardinalities of
the base tables, select, project, and join selectivities, etc. They also have precise estimates of the cost
of an operation because they know many of the details of the execution engine algorithms and the
hardware on which the engine runs.

Mediators often do not have the \luxury" of precise statistics and cost estimates for the queries they
send to to the sources. The reason is that the information sources do not maintain statistics or they
do not want to export them. In this case, the optimizer has to have its own source of statistics. In
[ACPS96] we have considered inferring statistics and cost estimates from prior usage of the sources.
This work has not been implemented and evaluated in the context of TSIMMIS and hence it is only
brie
y described in Section 5.7. Instead, the optimization component of TSIMMIS uses statistics
and cost estimation information that is provided by the mediator speci�er. We discuss the details in
Section 5.3.2.

� Typical Queries: Conventional systems have mainly focused on optimizing conjunctive queries and
views. However, integration systems will typically deal with queries or views that union and fuse
information. The optimization of such queries will produce new challenges and opportunities. For
example, Section 5.6 shows that pushing the maximum number of conditions to the sources is not the
optimal policy for fusion mediators. The performance evaluation of Section 6 further illustrates this
point. We have also formally proved our claim in [AGMPY].

The above three points will help us position MedMaker's cost-based optimizer described in the following
sections.
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5.3.2 Cost-Based Optimization in MedMaker

The optimization criterion used by MedMaker is the minimization of the time required to retrieve the full
answer. To achieve this the optimizer chooses between di�erent join policies and join orders for executing
the conditions that appear in the tails of the datamerge rules. Other optimizations, such as specialized
optimizations for fusion queries, have been tested but not implemented by MedMaker's optimizer yet. They
will be separately described in Section 6.

MedMaker assumes that the sources do not provide any statistics. Instead, its optimizer uses information
that the implementor attaches to the mediator speci�cation. This information assists the mediator in choos-
ing join policies and join orders. The following example illustrates MedMaker's cost-based optimization. In
particular, it shows how given (i) a query, and (ii) a mediator speci�cation, annotated with cost information
about the sources, it chooses a plan.

EXAMPLE 5.3.1 Consider the followingmediatorMS2 that joins entries of inspec, a bibliographic system
of Stanford University, with the articles of biblio, a list of bibliographic information �les maintained by
Stanford's DB group.

(MS2) <join entry f<title T> <abstract B> <author A> <year Y>g>@med :-

<inspec entry V:f<title T> <abstract B> <author A>g>@inspec
AND <biblio entry f<title T> <year Y>g>g>@biblio

Then consider the following query which retrieves entries with a speci�c author name.

(Q13) <ans f<title T> <abstract B> <year Y>g> :-

<join entry f<title T> <abstract B> <author ``Joe''> <year Y>g>@med.

The datamerge program for the \Joe" query is the following.

(MS3) <ansf<title T> <abstract B> <year Y>g>@med :-

<inspec entry V:f<title T> <abstract B> <author ``Joe''>g>@inspec
AND <biblio entry f<title T> <year Y>g>@biblio

There are three datamerge graphs that execute the above rule and correspond to the three available join
policies for doing the join.

� local join: Retrieve all \Joe" entries from inspec and all entries from biblio and do the join locally.

� passing bindings from biblio to inspec: retrieve all entries from biblio and for each title that
appears send to inspec a query that retrieves the speci�c document.

� passing bindings from inspec to biblio: retrieve all \Joe" entries from inspec and for each one
of them send to biblio a query that retrieves articles with the same title.

In order to evaluate the cost of these plans we have to consider the features of each source: biblio has
no index structure; every query is answered by sequentially scanning all bibliographic entries (approximately
�ve thousand) of the underlying source. Hence, the response time of a query is �xed. Source inspec is much
larger and has many indexes that signi�cantly speed up the search. The time required to answer an inspec

query is roughly proportional to the size of the result.
Given this information about the sources the optimizer must avoid selecting the \passing bindings from

inspec to biblio" plan. Passing bindings from inspec to biblio requires that the data of biblio are
scanned n times, where n is the number of \Joe" entries in inspec. This plan is obviously extremely
expensive when n is large. It is the best one only in the case where there is no \Joe" in inspec. Even in
this case, its only bene�t over the second best plan is that it avoids altogether scanning biblio whereas the
local join plan described below will scan biblio once.
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The decision between the other two plans is not straightforward. The \local join" plan sends only one
query to inspec but it retrieves all \Joe" entries found in inspec| not only those which match with some
entry of biblio. The \passing bindings from biblio to inspec" plan retrieves only the necessary data
but it issues many queries | as many as the articles in biblio. The mediator implementor can assist the
optimizer in this decision by providing explicit information about the policy that should be used for joining
the conditions, as shown below.

(MS4) <join entry f<title T> <abstract B> <author A> <year Y>g>@med :-

<inspec entry V:f<title T> <abstract B> <author A>[6]g>@inspec[2]
AND <biblio entry f<title T> <year Y>g>g>@biblio[10]

join threshold=1

The numbers 10 and 2 can be seen as logarithmic metrics of the conditions' selectivity before we specify the
value of any subobject condition. The number 8 speci�es the selectivity increase of the inspec condition if
the author is provided. For the datamerge program of our running example the overall selectivity of biblio
is 10 and the overall selectivity of inspec is 6+2=8. If the di�erence between the conditions participating
in the join is larger than the join threshold then the optimizer chooses to pass parameters from the \high"
selectivity condition to the \low" selectivity condition. The intuition is that the parameterized queries will
be only a few, they will \focus" more the high selectivity condition, and hence they'll signi�cantly reduce
the cost. Otherwise, local join is chosen. In our running example, we would have a local join if the author
condition was more selective, i.e., if it was assigned an 8 instead of 6.

It is obvious that the implemented optimizer has a \crude" cost model. For example, the optimizer has
no way to estimate the number of objects returned by each condition and, consequently, the number of
parameterized queries that will be asked. The join selectivities, which may also be particularly important,
are absent. We excluded these features from our optimizer to simplify it. Undoubtedly, better optimizers
should include these features.

Indeed, in [ACPS96] we propose an optimizer that selects the optimal plan using information about the
cardinalities and the response times of the queries that are sent to the sources. Furthermore, the optimizer
estimates the cardinalities and response times by using information about the cardinalities and response
times of queries that have been sent to the sources in the past. This optimizer has been implemented for the
HERMES heterogeneous information system which is based on the relational data model. We believe that
there is no inherent di�culty in adapting the optimization techniques of [ACPS96] to the OEM model.

5.4 Object Fusion

In Section 5.1 we informally described the resolution and uni�cation algorithms run by QD&AO. Indeed,
these algorithms were implemented for the �rst version of MedMaker, but we had to reconsider them because
they do not handle object fusion and because their complexity indicated that the upgrade to object fusion
would be extremely complicated. In this section we describe the changes that were required for handling
object fusion. We also describe formally the resolution and uni�cation algorithm that is run by QD&AO.

Section 5.4.1 describes the main enhancement for object fusion in QD&AO, namely the reduction of the
queries and the speci�cations into the normal formMSL (informally described in Section 4.4.3). Section 5.4.2
formally describes the resolution and uni�cation process which are signi�cantly simpler due to the normal
form. Section 5.5 formally describes \normalization".

5.4.1 Enhanced Query Decomposition and Algebraic Optimization

An important step in the handling of object fusion is the transformation of queries and mediator speci�cations
into normal form MSL. Recall, normal form MSL (see also Section 4.4.3) is very similar to full MSL except
that patterns always have three �elds and certain constructs (such as V:f<title 'abc'>g are not allowed.
Having fewer and more regular constructs simpli�es the query processing work that follows. In Appendix A
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we give the syntax of full and reduced MSL. In Section 5.5 we present an algorithm for converting MSL into
normal form. As an example, the algorithm converts the query

(Q14) <X tr V> :- <X tr V:f<title 'abc'>g>@m

into the query

(Q15) <X tr f<Void Vl Vv>g> :- <X tr f<T2 title 'abc'> <Void Vl Vv>g>@m

In the second step QD&AO (the Query Decomposer and Algebraic Optimizer) generates a logical
datamerge program by matching the query tail conditions with rule heads. Normal form signi�cantly sim-
pli�es uni�cation and furthermore it allows object fusion. However, the handling of object fusion requires
extensions in our algorithms, as we discuss in the next section.

Query Processing with Fusion

Object-id based fusion introduces additional complexity to the QD&AO process because multiple rules or
multiple instantiations of the same rule may contribute to the same mediator object. Hence the query
decomposition algorithm that we informally described in Section 5.1.1 is not enough because we have to
simultaneously match the query tail conditions with the heads of more than one rule. In this section, we
informally generalize our QD&AO algorithm to cover this case and then we formally present the algorithms
run by QD&AO in Section 5.4.2.

Let us consider the following mediator (MS3), which was �rst introduced in Section 4.3 and merges
information from sources s1 and s2.

(MS3) (R3.1) <trep(RN) techreport f<title T>g>@m :-

<report f<report num RN> <title T>g>@s1
(R3.2) <trep(RN) techreport f<postscript P>g >@m :-

<report f<report num RN> <postscript P>g>@s2

The �rst step is to convert the rules to normal form MSL. At the same time we rename variables so that
no two rules have common variables; using renaming we avoid confusion when rules are merged into a single
datamerge rule. (We have also abbreviated some labels; this is just to have more compact patterns in this
section.)

(MS16) (R16.1) <trep(RN1) tr f<T1 title T>g>@m :-

<Ro1 r f<RNo1 rn RN1> <T1 title T>g>@s1
(R16.2) <trep(RN2) tr f<Poid postscript P>g>@m :-

<Ro2 r f<RNo2 rn RN2> <Poid postscript P>g>@s2

Rules (R16.1) and (R16.2) contribute information to the same tr objects. Furthermore, di�erent in-
stantiations of the same rule may contribute information to the same tr object. For example, assume that
s1 has two r objects for the same report number (the source may have duplicates for the same report).
Then rule (R16.1) will have two di�erent instantiations with the same RN1 binding and possibly di�erent T
bindings. These two instantiations will both contribute information to the same tr.

Let us now submit to m the query (Q15) which asks for all the subobjects of the tr objects where the
title is 'abc'. Since the subobjects of the query may come from di�erent rules, the QD&AO rewrites the
query (Q15) as (Q17):

(Q17) <X tr f<Void Vl Vv>g> :- <X tr f<T2 title 'abc'>g>@m AND

<X tr f<Void Vl Vv>g>@m
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In this transformed form, which we call single path conditions form, we break up the tail so that every set
pattern f ... g contains exactly one object pattern < ... >. Such a transformation is straightforward.6

Now we can match the two patterns that appear in the (Q17) query tail to di�erent rule heads. Suppose
that we start by matching the �rst pattern of the tail, i.e., <X tr f<T2 title 'abc'>g>.7 It matches only
with the head of (R16.1). This produces the uni�er:

�1 = [(R16:1) : X 7! trep(RN1); T1 7! T2; T 7! 0abc0]

Applying the uni�er �1 to the query and the rule and replacing the query condition, we produce the
following rule.

(Q18) <trep(RN1) tr f<Void Vl Vv>g> :-

<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1 AND

<trep(RN1) tr f<Void Vl Vv>g>@m

Observe that this new query has only one condition referring to mediator m. To complete the process,
we match the remaining condition that refers to m with the mediator rules. Pattern <trep(RN1) tr f<Void
Vl Vv>g>@m matches with either one of the rules of our speci�cation.

First, it matches with rule (R16.2) thus producing the uni�er �2

�2 = [(R16:2) : RN2 7! RN1; Void 7! Poid; Vl 7! postscript; Vv 7! P]

Second, <trep(RN1) tr f<Void Vl Vv>g> matches with (R16.1). In this case we have to take into
consideration that multiple instantiations of rule (R16.1) may contribute title subobjects to the same tr
object. Since we have already used (R16.1) for matching the �rst condition of the query tail, we must not
use the same copy of (R16.1) again for matching the second condition. Thus, we introduce a second instance
of (R16.1) (see rule (R16.1.b) below) and we match <trep(RN1) tr f<Void Vl Vv>g> against it, producing
the uni�er �3. Note, the second instance of rule (R16.1) must not have the same variable names as the �rst
one.

(R16.1.b) <trep(RNb) tr f<T1b title Tb>g>@m :-

<Ro1b r f<RNo1b rn RNb> <T1b title Tb>g>@s1

�3 = [(R16:1:b) : RNb 7! RN1; Void 7! T1b; Vl 7! title; Vv 7! Tb]

Finally, for each one of the two uni�ers �2 and �3 we develop one datamerge rule, shown below in
datamerge program (DP19). Rule (DR19.1) is obtained by replacing the m condition of (Q18) with the rule
tail of (R16.2) and subsequently applying �2. Similarly, (DR19.2) is derived using the rule tail of (R16.1.b)
and uni�er �3.

(DP19) (DR19.1) <trep(RN1) tr f<Poid postscript P>g> :-

<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1
AND <Ro2 r f<RNo2 rn RN1> <Poid postscript P>g>@s2

(DR19.2) <trep(RN1) tr f<T1b title Tb>g> :-

<Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1
AND <Ro1b rf<RNo1b rn RN1> <T1b title Tb>g>@s1

In this particular case one query condition matched only with one rule head. In the worst case each
condition matches with many rule heads potentially yielding an exponential number of datamerge rules.
More precisely, if each of the m query conditions unify with n rules, we produce nm datamerge rules.
This explosion can occur, for instance, if the fusion mediator speci�cation has variables in label positions.
Alternative query processing techniques for reducing the number of datamerge rules in fusion mediators are
described in Section 5.6 and are evaluated in Section 6.

6It is sometimes possible to avoid this step, e.g., if QD&AO �nds that no object id fusion is performed on objects with a
given label.

7In general, the order in which we match conditions does not a�ect the �nal result.
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5.4.2 Formal Speci�cation of Resolution and Uni�cation for Normal Form MSL

In this section we formally describe resolution and uni�cation. We start by formally de�ning the uni�er of
a condition with a rule head. Then, we describe an algorithm that discovers all uni�ers.

The notation �(e) represents the expression e where the substitutions indicated by the mappings of uni�er
� have been performed. A single path condition e1 matches with a head e2 of rule r if there is a uni�er �
from e1 to e2, as described by De�nition 5.4.1 below. Note, the following de�nition is also applicable for any
normal form pattern e2 and single path pattern e1.

De�nition 5.4.1 (Uni�er � from e1 to e2) � is a uni�er from e1 to e2 if the pattern �(e1) is included in
the pattern �(e2), as described by De�nition 5.4.2. 2

De�nition 5.4.2 (Pattern e1 is included in e2) A pattern e1 is included in a pattern e2 if and only if

(a) e1 has identical object-id and label �elds as e2
(b) if the value �eld of e1 is of the form fe01g

then the value �eld of e2 is of the form fe12,: : :,e
m
2 g and

there is a pattern ej2; j = 0; : : : ;m such that e01 is included in ej2.
else if the value �eld of e1 is of the form fg

then the value �eld of e2 is of the form fe12,: : :,e
m
2 g (m may be 0)

else e1 and e2 have the same value �eld.

2

For example, the �rst condition of query (Q17) matches with (R16.1) because the uni�er �1 maps the
condition to the rule head.

Computation of Uni�ers: Apparently, uni�cation of normal form patterns is closely related to term
uni�cation (Section 12.4 of [Ull89]). However, we must take into consideration the following di�erences:

� Each condition subobject may match with any rule head subobject. Because of this we may have
multiple uni�ers of a given condition with a given head.

� A variable that appears in value position may unify with a set pattern.

The uni�cation algorithm is given in Figure 5.3. The input is one single path condition c and a rule head
r. The output is the set of uni�ers of c and r. Before we analyze the algorithm let us �rst provide a few
explanations:

� The algorithm uses term uni�cation for matching object-id's, labels, or atomic values. However we do
not describe term uni�cation. Descriptions can be found in [Ull89] or [GN88].

� The composition � � � of two uni�ers � and � is similar to composition of �rst-order logic uni�ers. We
�rst apply � to all mappings of � and then we merge in a single uni�er the mappings of both � and �.
For example, if � = [X 7! a] and � = [Y 7! X] then � � � = [X 7! a; Y 7! a].

The composition fails {and consequently the attempted uni�cation also fails { if we attempt to have
more than one mappings for a variable. For example, assume that we have already mapped the
condition variable V to f<a f<l X>g>g. Then the uni�cation of the condition <o f<b V>g> and the
rule head <o f<b f<g Y>g>g> fails. Intuitively, the uni�cation failed because V binds to sets and MSL
prohibits deep set equality operations .
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Let us now informally describe the uni�cation algorithm of Figure 5.3. It is based on the recursive
function unify that is initially called with arguments the condition c, the head r and the empty uni�er. In
general, unify is passed a uni�er � that carries all mappings that have already been developed either from
matching another condition with the mediator speci�cation or even from matching a part of the currently
matched condition with the speci�cation.

For example, consider the condition <f(X) X f<l(U) S U>g> and the rule head <f(Y) o f<l(W) s1 Y>

<l(V) s2 V>g>. If the algorithm succesfully uni�es the object-id's it formulates an intermediate uni�er �oid
which is [X 7! Y] in the running example. Then it applies �oid to the labels and attempts to generate the
uni�er �label . In the running example applying �oid to the label X returns the label Y. The uni�cation of the
label Y with the label o results in

�label = [Y 7! o]

If the value �elds of c and r are terms then the algorithm applies

�label � �oid = [X 7! o; Y 7! o]

to the values and uni�es them attempting to produce the uni�er �value . If it succeeds it returns the uni�er
�value � �label � �oid.

If the value �elds are non empty sets, as is the case in the running example, then the algorithm recursively
calls unify, passing the subobject of the condition <l(U) S U>, one of the rule head's subobjects, and the
uni�er �label � �oid that has been formulated so far. Note unify makes n recursive calls, where n is the
number of subobject patterns in the rule head. In the running example we have a call

unify(<l(U) S U>, <l(W) s1 Y>, [X 7! o; Y 7! o])

and a call

unify(<l(U) S U>, <l(V) s2 V>, [X 7! o, Y 7! o])

For every recursive call the algorithm produces a set of succesful uni�ers. The union of the sets constitutes
the result of unify. In the running example we end up with the uni�ers

[X 7! o; Y 7! o; S 7! s1; U 7! o; W 7! o]

and

[X 7! o; Y 7! o; S 7! s2; U 7! V]

Hence the result produced by the algorithm is the set

f[X 7! o; Y 7! o; S 7! s1; U 7! o; W 7! o]; [X 7! o; Y 7! o; S 7! s2; U 7! Vg

The above discussion assumed that either the values of the condition pattern c and the rule head pattern
r are both terms or they are both sets. Figure 5.3 also describes the cases where the value of c is a set and
the value of r is a variable or vice versa. In the former case (where the value of c is a variable) we have to
create a mapping from the value of c to the set pattern that stands for the value of r. For example, if the
condition is of the form <l V> and the head is of the form <l f<a 1> <b 2>g> then we create the mapping

[V 7! f< a 1 >< b 2 >g]

and add it to the uni�er �label � �oid � � that has been produced up to that point. For the sake of simplicity
the pseudocode of Figure 5.3 does not handle the complications that arise if the value of c is a variable that
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already appears in �label � �oid � �. We will illustrate some of these complications, which are actually handled
by the implementation code, using examples.

Assume that we attempt to match the condition <X o X> with <Y o f<a 1>g>. First we map X to Y,
which is a term, and then the uni�cation fails because X cannot be a set and a term simultaneously. A more
subtle case raises if the condition variable is already mapped to a set. For example, assume that V is already
mapped to f<a 1> <b 2>g. Assume that we now want to match V with f<a 1>g. The algorithm will stop
the processing of this query and will notify the user that it can not be done because it requires deep set
equality | a feature not inncluded in the MSL semantics.

If the value of c is a set pattern and the value of r is a variable V then, intuitively, the mapping must
force V to bind to subobjects that correspond to the patterns in c. Hence, the uni�cation procedure maps V
to the set pattern if V is not already mapped to anything. Otherwise, if V is already mapped to a set pattern
the two sets are concatenated (see the pseudocode of Figure 5.3). For example, assume that we match the
condition

<o f<a f<x 1>g> <b f<y 2>g>

with the head

<o f<a V> <b V>g>

First we map V to f<x 1>g because the a object must have a <x 1> subobject. Then we update the mapping
of V to f<x 1> <y 2>g because the b object must have a <y 2> subobject and the a and the b objects have
the same value.

The uni�cation routine is the main component of the QD&AO algorithm of Figure 5.4. Recall that
the QD&AO algorithm matches a query condition that refers to the mediator view with all possible rule
heads. For every succesful matching a rule is derived by replacing the query condition with the tail of the
corresponding rule. If the derived rule contains no reference to the mediator view then it becomes one of the
datamerge rules that are the output of QD&AO. Otherwise the derived rule is placed in the queue L of the
algorithm of Figure 5.4. The algorithm continues operating until the list L is empty. The generalization of
the algorithm to queries that involve more than one rules is straightforward.

5.5 Normalization of MSL Rules

This section describes the reduction of MSL rules into normal form. This reduction is very important
for simplifying the matching process, as we have seen in the example of Section 5.4.1. The reduction is
implemented by the normalizer component of the interpreter (see Figure 5.1). Recall, the normal form has
only three �eld object patterns and there are no object variables (e.g.the O in O:<l V>), subobject conditions
on set variables (e.g.<l V:f<s 1>g>), or rest variables (e.g.<l f<s 1> | Restg>).

Section 5.5.1 provides a categorization of the variables that appear in MSL rules. The categorization is
essential for the reduction/elimination of object variables, rest variables, and value variables that bind to
sets. Section 5.5 describes the steps of the reduction. It also contains examples for the steps that are not
obvious.

5.5.1 Categorization of Variables

We use the following categorization of MSL variables in the reduction of arbitrary MSL rules to normal-form
MSL rules.8 Note that a variable may be classi�ed in more than one of the following categories:

1. atomic variables, that bind to atomic entities only (e.g., object-id's, labels, atomic values) for any
object structure exported by the wrappers. These are the variables that appear

8We also use the categorization in the expression of safety and typing constraints (see Appendix B.0.1.)

45



INPUT A single path condition c, and
a normal-form rule head r

OUTPUT A set S of uni�ers � such that �(r) contains �(c)
METHOD Run the function S =unify(c,r,[])

function unify(c,r,�) returns sets of uni�ers

apply � to c:oid and r:oid

if term uni�cation of c:oid and r:oid results in �oid unify object-id's
apply �oid � � to labels of c and r

else return empty set

if uni�cation of c:label and r:label results in �label unify labels
apply �label � �oid � � to values of c and r

else return empty set

if c:value and r:value are terms and their term uni�cation results in �value
if atomic objects then unify the term values

return �value � �label � �oid � �
else if c:value is a variable and r:value is a set
return [c:value 7! r:value] � �label � �oid � �

else if c:value is a set fc1 : : : cdg and r:value is a variable
if there is already de�nition of the form r:value 7! fs1 : : : spg
return [r:value 7! fc1; : : : ; cd; s1; : : : ; spg] � �label � �oid � �

else
return [r:value 7! fc1; : : : ; cdg] � �label � �oid � �

else if c:value is the empty set and r:value is a set
return �label � �oid � �

else if c:value has a subobject condition c0 and r:value is a set
for each subobject ri or r:value

Si =unify(c0, ri, �label � �oid � �)
return the union [iSi of the results of the unify calls above

else return empty set

Figure 5.3: The uni�cation algorithm
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INPUT A single rule query q and a set of speci�cation rules, both in normal form
OUTPUT A datamerge program
METHOD

transform the tail of q into single path form
insert q in the queue L
initialize the datamerge program with the empty set of rules
while L is not empty

extract a rule rq from L
extract a condition c from tail(rq), such that c does not refer to a mediator view
for each rule r of the mediator speci�cation

call � =unify(c, head(r), [])
for each � in �

create a rule r0 such that
the head of r0 is �(head (rq))
the tail of r0 the conjunction of �(tail(r)) and �(tail (rq))

if a condition of r0 refers to a mediator view
transform the tail of r0 into single path form
insert r0 in L

else
insert r0 in the datamerge program

Figure 5.4: The QD&AO algorithm

� in the object-id and label �elds of object patterns of the head and/or the tail of the MSL rule,

� in the arguments of predicates, either in the head or the tail of the MSL rule,

2. object variables, that bind to objects (e.g.O in O:<l V>. They appear in place of hobject variablei in
the hobject conditioni production of the syntax.

3. rest variables, that bind to sets of objects and appear in place of hset variablei in the hresti production
of the syntax. For example, the variables Rest1 and Rest2 of the mediator speci�cation of med (see
Section 4.1) are rest variables.

4. non-atomic value variables, which bind to sets of objects. They appear in place of value �elds of
patterns of the tail and are not atomic variables. Non-atomic value variables are further classi�ed into
the following two categories:

`

(a) value variables that bind to sets (of objects) only: they are value variables that appear in place of
a hset variablei in the hvalue conditioni production of the syntax. For example, in the following
MSL rule V1 binds to sets only

O:- <L V1:{<l1 X>}>@src

(b) value variables that bind to atomic constants or sets: all the non-atomic value variables that can
not be classi�ed as value variables that bind to sets only.

EXAMPLE 5.5.1 Let us illustrate using an example the variable classi�cation described above. Consider
the following rule.

<X ans V>@med :- O:<I l V:f<s X> <t T>g>@src
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� X is atomic because it appears in the object-id position.

� O is object variable.

� V is non-atomic value variable. Indeed, it is non-atomic value variable that binds to sets only.

� T is non-atomic value variable that binds to atomic constants or sets.

2

5.5.2 Reduction of Arbitrary MSL rules to Normal-Form MSL Rules

The reduction of arbitrary MSL rules to normal-formMSL rules proceeds in the following steps which must
be executed in this speci�c order:

1. reduce all 2-�eld object patterns that appear in the MSL rule's tail to 3-�eld object patterns. In
particular, we �ll the missing object-id �elds with invented unique variables.

2. for every variable V that is an object variable, rest variable, and value variable that may bind to sets
�nd a set AV of object-id variables that are su�cient for describing the bindings of the object, rest,
and value variables. We will say that \AV is the association set of V " or \V is associated with the
variables in AV ". For example, the association set of V in example 5.5.1 is fIg. See Subsection 5.5.4
for details on computing association sets.

3. reduce every 2-�eld head object pattern, i.e. a pattern that does not specify the object-id of the
generated object, to a 3-�eld pattern. We �ll the missing object-id �eld with an invented term that
stands for the automatically generated object-id. This is a very important step because the generated
object-id directs how the result will be grouped. See Subsection 5.5.5 for the details of object-id
generation. Note that this step has to be done after step 2 because the normalizer needs the association
sets in order to generate the object-id's.

4. eliminate all object, rest, and non-atomic value variables (see Subsection 5.5.6).

5.5.3 Reduction of 2-�eld Tail Object Patterns to 3-�eld Patterns

The normalizer replaces all 2-�eld object patterns that appear in the MSL rule tail with 3-�eld patterns that
explicitly specify object-id, label, and value. In particular every 2-�eld pattern

<hlabelihvaluei>

is replaced by a 3-�eld pattern

<O hlabeli hvaluei>

where O is an invented variable that does not appear anywhere else in the MSL rule.

5.5.4 Associations of Non-Atomic Variables to Atomic Variables

The normalizer associates every \non-atomic" variable V with one or more atomic variables V a
1 ; : : : ; V

a
m

that will be su�cient for \simulating" the behavior of V . The complete list of variable associations is the
following:
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1. if O is an object variable that appears in the MSL rule head, then we associate O with an object-id
term hoid i such that the object pattern

O :<hoid i hlabeli hvaluei>

appears in the MSL rule's tail. The angles in hoid i; hlabeli; hvaluei signify that anything that could be
present in an oid, label, or value �eld is acceptable in the pattern above.

2. if R is a rest variable that appears in the MSL rule head, then the normalizer includes in the association
set of R the object-id term hoid i where the object pattern

<hoidihlabeli f:::jR:::g>

appears in the MSL rule's tail. We will name hoid i \the oid-rest term associated with R". Furthermore,
the normalizer includes in the association set of R the object-id terms hoid ii of the subobjects of hoid i
that must be excluded from R. We name each hoidii \an oid-excluded term associated with R".

For example, consider the mediator speci�cation

<N L R> :- <O L {<I name N> | R}>@src

The oid-rest term associated with R is O. The oid-excluded term { in this case only one { associated
with R is I.

3. If the non-atomic value variable V appears in the MSL rule head associate V with an object-id term
hoidi such that the object pattern

<hoidihlabeli V>

or

<hoidihlabeli V:f: : :g>

appears in the MSL rule tail.

EXAMPLE 5.5.2 Consider the rule

<ans V Rest>@med. :- <L l V:f<s X> <T t f<A a Y>| Restg>g>@s.

V is associated to the object-id L and Rest is associated with the oid-rest term T and the oid-excluded term
A. 2

5.5.5 Object-Id Generation

We replace every 2-�eld object pattern that appears in the MSL rule head with a 3-�eld pattern, by inventing
an object-id variable that appears in place of the object-id �eld. For example, the normalizer assigns to the
ans object of the rule in Example 5.5.2 the object-id s1(L,T) for reasons we will explain below.

In general, if the 2-�eld pattern

<hlabelihvaluei>

appears in the MSL rule head, it is replaced by the 3-�eld pattern

<s( �X) hlabelihvaluei>

where s is an invented name that does not appear in the MSL speci�cation or the wrapper data and �X is a
list of variables. Intuitively, the selection of variables in �X guarantees that it is impossible to generate two
objects that will be \accidentally" fused together.
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1. we insert in �X all atomic variables that appear in the MSL rule head.

2. if the object variable O appears in the MSL rule's head, then we insert in �X the object-id term hoid i
that is associated with O.

3. if the rest variable R appears in the MSL rule's head, then we insert in �X the oid-rest term hoidi that
is associated with R.

4. if the non-atomic value variable V that binds to sets only appears in the MSL rule's head, then we
insert in �X the object-id term hoid i that is associated with V.

EXAMPLE 5.5.3 The normalizer assigns to the ans object of the rule in Example 5.5.2 the object-id
s1(L,T) because L is the object-id associated with V and A is the oid-rest term associated with Rest.
2

5. if the non-atomic value variable V , which may bind both to sets and atomic values appears in the
MSL rule's head, the normalizer puts in �X a unique variable Z and it also puts in the rule's tail
the special predicate var(V;A; Z) where A is the object-id variable associated with V . The special
predicate var(Y,X,Z) causes Z=Y if Y is atomic and Z=X if Y is set. Let us justify with an example this
normalization step.

EXAMPLE 5.5.4 Consider the following rule that simply copies year objects from the wrapper to
the mediator.

<ans Y>@med :- <X year Y>@src

If the value of year is atomic the MSL semantics directs that the mediator exports one object for every
possible value of Y. Hence, the normal form equivalent of the rule is

<s(Y) ans Y>@med :- <X year Y>@src

However, we can not be sure that Y is atomic. Indeed, if Y is not atomic the normal form equivalent of
the rule is

<s(X) ans Y>@med :- <X year Y>@src

Using the var predicate the normal form equivalent of the above rule is

<s(Z) ans Y>@med :- <X year Y>@src AND var(Y,X,Z)

2

5.5.6 Elimination of Object, Rest, and Value Variables that Bind to Sets

We apply the following rules to eliminate all object, rest, and value variables that bind to sets. Let us �rst
provide a short example which illustrates the transformations formally described later.

EXAMPLE 5.5.5 Let us consider again the rule

<ans fV Restg>@med. :- <L l V:f<s X> <T t f<A a Y>| Restg>g>@s.

After the normalizer removes the variables V and Rest it derives the following rule.

50



<s1(L,T) ans f<Void Vl Vv> <Restoid Restl Restv>g>@med. :-

<L l f<Void Vl Vv> <s X> <T t f<A a Y> <Restoid Restl Restv>g>g>@s
AND neq(A, Restoid)

Notice that the variable V has been replaced by the pattern <Void Vl Vv> which will bind to all objects
that V would bind to. The rest variable Rest has been replaced by <Restoid Restl Restv>. In addition,
the predicate neq enforces that <Restoid Restl Restv> does not bind to a subobjects of l. 2

The formal description of the transformation follows:

1. if the object variable O appears in the MSL rule's head, and O is associated with the object-id term
hoidi the normalizer replaces instances of O in the MSL rule's head with $hoidi, which stands for the
object identi�ed by hoidi.9 We remove O from the MSL rule's tail. This normalization has not been
implemented yet because the QD&AO module does not process $ structures.

2. if the rest variable R appears in the MSL rule's head, and R is associated with the oid-rest term hoid i
and the oid-excluded terms hoidi1; : : : ; hoidin then

(a) we replace the pattern

<hoid ihlabeli fhexcluded subobjectsi jR :[fhrestig]g >

of the MSL rule tail with

<hoidihlabeli fhexcluded subobjectsi < R L V >[hresti]g >

where L and V must be invented unique variables.

(b) we add in the MSL rule tail the following conjunction of external predicates

neq(R; hoidi1) ^ : : :^ neq(R; hoidin)

where the built-in predicate neq is satis�ed if its two arguments are not identical.

(c) we replace the object patterns

<hoid 0ihlabeli fhsubobjects listi R hsubobjects listi0g >

of the MSL rule head with

<hoid 0ihlabeli fhsubobjects listi $R hsubobjects listi0g >

(d) we replace the object patterns
<hoid 0ihlabeli R >

of the MSL rule head with
<hoid 0ihlabeli f$Rg >

(e) if R appears in place of the MSL rule head, we replace it with $R.

3. if the value variable V that binds only to sets appears in the MSL rule's head then

9In order to keep simple the syntax of Figure A.1 we allow only variables to follow the $ symbol. If hoidi is not a variable,
but it is a constant or a term we should introduce in the body of the rule an equality V = hoidi where V is an invented variable.
Then we can place V after the $

51



(a) we replace the pattern
<hoid ihlabeli V : fhobj cond listig >

of the MSL rule tail with

<hoidihlabeli f< V L Val >hobj cond listig >

where L, T, and Val must be invented unique variables.

(b) we replace object patterns

<hoidi0hlabeli fhsubobjects listi V hsubobjects list 0ig >

of the MSL rule head with

<hoid i0hlabeli fhsubobjects listi $V hsubobjects list 0ig >

(c) we replace object patterns
<hoid 0ihlabeli V >

of the MSL rule head with
<hoid 0ihlabeli f$Vg >

(d) if V appears in place of the MSL rule head, we replace it with $V.

5.6 More Optimizations

Datamerge rules are evaluated by sending queries to the sources, yielding bindings for the rule variables.
Since querying sources may be expensive, we want to reduce the number of queries to a minimum. This
section presents a large number of techniques that are used for this purpose.

We start with optimizations that are based on rewritings of the datamerge rules using a modi�cation of
subsumption for MSL. QD&AO uses two subsumption-based optimizations for this purpose, rule elimination
and query reuse.

Rule elimination: A datamerge rule can be eliminated if the data that it produces are subsumed by the
data produced by another rule.

Query reuse: Each query generated by a datamerge rule obtains bindings for variables, but not all bindings
are useful for constructing the fused object. Only variables that appear in the rule head, or variables that
join conditions in the tail, are useful. We may avoid issuing a query if all of its bindings for useful variables
are obtained by another query to the source.

We only illustrate query reuse and not rule elimination (that is very similar). Let us consider datamerge
rule (DR19.1). To evaluate it, we need to send a query to s1 to evaluate the condition <Ro1 r f<RNo1
rn RN1> <T2 title 'abc'>g>@s1. This query only contains one useful variable, RN1. Notice that all RN1
bindings in the above condition are also bindings of RN1 in rule (DR19.2). Hence, instead of accessing s1

twice, we can reuse the bindings retrieved for (DR19.2) by rewriting the datamerge program as follows.
Note, (DR19.2.b) and (DR19.1.b) correspond to the rewritten versions of (DR19.2) and (DR19.1).

(DR19.2.b) [ <trep(RN1) tr f<T1b title Tb>g>
bind1(RN1) ] :- <Ro1 r f<RNo1 rn RN1> <T2 title 'abc'>g>@s1

AND <Ro1 r f<RNo1b rn RN1> <T1b title Tb>g>@s1
(DR19.1.b) <trep(RN) tr f<Poid postscript P>g> :- bind1(RN1)

AND <Ro2 r f<RNo2 rn RN1> <Poid postscript P>g>@s2
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(DP22) (DR22.1) [ <trep(RN1) tr f<O1 A1 X1>g>
bind1(RN1) ] :- <Ro1 r f<RNo1 rn RN1> <Y year '95>g>@s1

AND <Ro1b r f<RNo1b rn RN1> <O1 A1 X1>g>@s1
(DR22.2) <trep(RN1) tr f<O2 A2 X2>g> :- bind1(RN1)

AND <Ro2 f<RNo2 rn RN1> <O2 A2 X2>g>@s2
(DR22.3) [ <trep(RN2) tr f<O2 A2 X2>g>

bind2(RN2) ] :- <Ro2 r f<RNo2 rn RN2> <O2 A2 X2>g>@s2
AND <Ro2b r f<RNo2b rn RN2> <Y year '95'>g>@s2

(DR22.4) <trep(RN2) tr f<O1 A1 X1>g> :- bind2(RN2)

AND <Ro1 r f<RNo1 rn RN2> <O1 A1 X1>g>@s1

Figure 5.5: Datamerge program

The notation [ ... ] speci�es multi-head rules. Thus, the data retrieved from the tail of (DR19.2.b)
is used for constructing <trep(RN) tr f<T1b title Tb>g> objects, as well as collecting the RN1 bindings in
relation bind1(RN1) (the name bind1 is a unique name generated by the QD&AO.) Then, the RN1 bindings
are used by (DR19.1.b).

We can detect the applicability of the \query reuse" and \rule elimination" rewritings by using uni�ers.
In particular, a datamerge rule condition c can reuse a datamerge rule r if there is a uni�er � from the tail of
r to c and every useful variable of c appears in the head of r. Similarly, a datamerge rule r0 can be eliminated
if there is a datamerge rule r and a uni�er � such that � maps the tail of r0 to the tail of r and it also maps
the head of r to the head of r0.

Note, subsumption based rewritings always improve the datamerge program. The rule elimination tech-
nique always improves a program because there are fewer rules to execute in the rewritten program. Fur-
thermore, a rule elimination does not a�ect the applicability of the \query reuse" optimization because when
we remove a rule r we still retain another one that generates data that is superset of the data generated
by r. The query reuse rewriting always improves the datamerge program assuming that retrieving bindings
from the mediator's storage is more e�cient than retrieving them from the source.

5.6.1 Limiting the Number of Datamerge Rules

As mentioned earlier, query processing may yield an exponential number of datamerge rules. In this section
we will study two techniques that can signi�cantly reduce the number of rules and queries sent to the sources.
Before discussing the techniques we give a concrete motivating example. Consider mediator (MS20) (that
also appeared in non-normal form MSL as (MS4) in Section 4.3). (MS20) integrates documents without
explicitly mentioning their non-key attributes.

(MS20)
(R20.1) <trep(RN1) tr f<O1 A1 X1>g>@all :- <Ro1 r f<RNo1 rn RN1> <O1 A1 X1>g>@s1
(R20.2) <trep(RN2) tr f<O2 A2 X2>g>@all :- <Ro2 r f<RNo2 rn RN2> <O2 A2 X2>g>@s2

Let us assume that query (Q21) is sent to mediator (MS20).

(Q21) <X tr f<Void Vl Vv>g> :- <X tr f<Y year '95'> <Void Vl Vv>g>@m

The label year may come either from s1 or s2. This intuition is captured by the standard query/rule
matching process (see Section 5.1) that results in the datamerge program (DP22) of Figure 5.5.

Observe that this simple query results in many datamerge rules and, consequently, in many queries sent
to s1 and s2. In general, if a query asks for reports with attributes l1,...,ln and the mediator speci�cation
does not indicate the origin of l1,...,ln, we must create and execute datamerge rules that correspond to all
possible partitions of the set l1,...,ln between s1 and s2, i.e., we need a number of rules that is exponential
in n.
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Learning about the sources

One of the strengths of MSL is its ability to integrate sources without having a \schema" that describes the
type of information found there. However, this lack of schema may result in the large number of rules we
have illustrated. In particular, a schema could help us rule out in advance queries that will never return an
answer, and hence reduce the number of rules. For instance, in (DP22), if we know that year information
may not come from s1 then we can remove rules (DR22.1) and (DR22.2) since they both require that a year
be found at s1.

Even though the mediator does not have a schema, it could achieve the same e�ect by asking at run time
if source s1 had any objects with year label. If no such objects existed at s1, the mediator could eliminate
all datamerge rules that require a year at s1. (In practice, we can interleave query decomposition with this
label checking, so the rules would never have to be created.)

The label queries we have described could be addressed to a lexicon service residing either at the source
or the wrapper for the source. The service could answer label queries based on its knowledge of the domain
(e.g., only medical terms de�ned in a known dictionary are used as labels in a given structure), based on
index structures (e.g., the source provides a label index for speeding up queries), or based on a local schema
if there happens to be one (e.g., the data at this source is stored in a relational database). We describe in
Chapter 6 a performance evaluation of the e�ects of lexicon servers.

There are many variations to the idea of lexicon services; we only mention two brie
y here. One variation
is a service that answers more complex queries regarding the relationship between labels. For instance, we
may want to ask if s1 contains any top-level objects with label r that in turn contain a year subobject. If
there are no such objects, then we can rule out s1 queries even if s1 has year labels somewhere. Another
variation is to cache label information from previous queries at the mediator itself. In this case, the lexicon
service would reside at the mediator, but its information could be out of date. Thus, this information could
not be used to rule out sources, but could be used to order queries so we would �rst probe the sources most
likely to have matching data. This is very useful if the end-user wants some results quickly or does not want
to perform an exhaustive search.

Local evaluation of conditions

We now consider a second technique for reducing the number of datamerge rules. The key observation is
that we are generating large numbers of queries because we are pushing all conditions to the sources. Thus,
we may try to reduce the number of datamerge rules by pushing fewer conditions, i.e., locally evaluating
some of the conditions.

For example, suppose that a query Q contains conditions on three labels l1, l2, and l3. Query Q is run
against a mediator that merges data from sources s1 and s2. Suppose that both sources know about these
labels. We may reduce the number of datamerge rules by considering �rst the l1 condition only. That is,
we evaluate an intermediate query that retrieves data from the sources based on the l1 condition only. The
result of this intermediate query contains the objects in the result of Q, but may contain additional objects.
Then, we use additional datamerge rules that apply the l2 and l3 conditions to the intermediate result.
There are two bene�ts to this approach: First, the total number of datamerge rules is smaller. In general, if
there are n labels in the conditions, we now generate a number of rules proportional to n, not exponential on
n. Second, fewer of these rules generate queries for the sources; the rest can be evaluated at the mediator.

The tradeo� here is as follows: If we push down conditions with high total selectivity we restrict the
amount of retrieved data but we increase the number of rules and queries. If we push fewer conditions, which
have a lower total selectivity, we have fewer queries but we retrieve more data. Balancing this tradeo� is a
cost-based optimization issue that is not currently addressed by the interpreter. The current implementation
always pushes the maximum number of conditions to the source, under the assumption that simultaneous
conditions on many labels are rare.
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(PDP23) (PDR23.1) [ <trep(RN) L V>, bind1(RN) ] :- <trep(RN) L V>@(Q24,s1)

(PDR23.2) <trep(RN) L V> :- bind1(RN)

AND(=>) <trep(RN) L V>@(Q25,s2)

(PDR23.3) [ <trep(RN) L V>, bind2(RN) ] :- <trep(RN) L V>@(Q26,s2)

(PDR23.4) <trep(RN) L V> :- bind2(RN)

AND(local) <trep(RN) L V>@(Q27,s1)

(Q24) <trep(RN) tr f<O1 A1 X1>g> :- <r f<rn RN> <Y year '95>g>@s1
AND <r f<rn RN> <O1 A1 X1>g>@s1

(Q25) <trep(RN) tr f<O2 A2 X2>g> :- <r f<rn $RN> <O2 A2 X2>g>@s2
(Q26) <trep(RN) tr f<O2 A2 X2>g> :- <r f<rn RN> <Y year '95'>g>@s2

AND <r f<rn RN> <O2 A2 X2>g>@s2
(Q27) <trep(RN) tr f<O1 A1 X1>g> :- <r f<rn RN> <O1 A1 X1>g>@s1

Figure 5.6: A Physical Datamerge Program

5.6.2 Applying Subsumption after Plan Generation

Our remaining logical optimizations are applied during or after physical plan generation. Thus, we start by
brie
y recalling how physical plans are obtained. (Section 5.2 explains this in more detail but here we focus
more on multirule datamerge programs that are candidates for subsumption.) Then, in the remainder of the
section we discuss logical optimizations to the physical plans.

The cost-based optimizer receives the datamerge program and creates a datamerge plan. An alternative
representation of datamerge plans | that facilitates the discussions of this Section | is a physical datamerge
program that consists of a list of (possibly parameterized) queries that will be sent to the sources, along with
a description of how to combine query results. To illustrate, let us consider the datamerge program (DP22).
(Assume that (DP22) could not be simpli�ed any further using lexicons.) (PDP23), in Figure 5.6, is one of
the possible physical datamerge programs (from now on referred to as physical programs) for (DP22).

The notation @(Q24,s1) in physical rule (PDR23.1) indicates that query (Q24) should be sent to s1 and
the result should be treated as a \data source" for the rule. The query obtains from s1 all data about reports
with year '95'. Rule (PDR23.1) then saves the retrieved reports and stores the RN bindings in bind1.

The => annotation in rule (PDR23.2) indicates that we perform a nested-loops join of bind1(RN) and
<trep(RN) L V>@(Q25,s2). That is, for every binding r of RN in bind1, we instantiate a parameterized
query (Q25), by replacing RN with r, and we send the instantiated query to s2. Similarly, the local

annotation that appears in (PDR23.4) indicates that we perform a local join of bind2(RN) with <trep(RN)

L V>@(Q27,s1). The join policy decision is made by estimating the cost of each option using information
about the sources (e.g., \does the source have an index on report number?") as we've seen in Section 5.3.

Query Subsumption Optimization In Section 5.6 we showed how to eliminate redundant rules from a
datamerge program and how to reuse the results of some rules. We now revisit subsumption and demonstrate
that once the actual queries have been formulated some query calls may be saved by reusing the results of
other queries.

For example, query (Q24) is subsumed by query (Q27) because (Q27) retrieves all the reports of s1
whereas (Q24) retrieves only the reports with year '95'. Furthermore, once we have the result of (Q27) we
may locally apply the condition on year and hence compute the result of (Q24). The optimizer captures this
relationship between (Q24) and (Q27), eliminates (Q24), and modi�es rule (PDR23.1) to use the subsuming
query (Q27). Note the condition on year that is applied on the result of (Q27).

(PDR23.1.b) [<trep(RN) L V>, bind1(RN)] :-

<trep(RN) L f<Y year '95'>g>@(Q27,s1)
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Detecting query subsumption is again done through uni�ers. In particular, a query q is subsumed by a
query q0 if there is a uni�er � that maps the tail of q0 to the tail q and furthermore all variables that appear
in �(head (q)) also appear in �(head (q0)). With a few extensions to the uni�cation process, we can also derive
the condition that has to be applied on the subsuming query.

Note that query subsumption optimization can only be performed after we know which queries will be sent
to sources, i.e., after the physical plan is generated. Our earlier logical optimizations could also be performed
at this latter stage, but it is much better to do them as early as possible to simplify plan generation. This
leads to the following strategy: �rst do as many logical optimizations as possible, then generate plans, and
�nally perform the remaining optimizations.

5.6.3 Optimization of Negation Operations

In Section 4.3.4 we argued that information blocking is e�ective for removing inconsistencies and establishing
priorities between information drawn from various sources. In general, all speci�cations involving information
blocking contain NOT conditions that guide blocking. The performance challenge is to avoid issuing queries
that retrieve information that is blocked. The interpreter can reduce to a minimum the number of queries
sent to the sources and the amount of retrieved data, for a wide class of queries and information blocking
mediator speci�cations. Due to space limitations, here we only sketch the techniques that are used.

Let us consider mediator speci�cation (MS6) that exports all s1 reports and s2 reports with numbers
that do not appear in s1. In the simplest case, the query speci�es the required report number RN, say '123'.
In this case we develop a physical datamerge program that contains (PDR28). The important point is that
we evaluate the NOT provides('123') condition of (PDR28) before we emit the query Q that obtains data
for '123' from s2. (We omit Q.) . Thus, if '123' is provided by s1 we avoid sending Q to s2.

(PDR28) <trep(RN) tr f<O2 A2 X2>g> :- NOT provides('123') AND
<trep(RN) tr f<O2 A2 X2>g>@(Q,s2)

In other cases, avoiding the retrieval of \blocked data" is more complicated or even impossible. For
example, consider query (Q15) that requests reports with title 'abc'. The best strategy here depends on
the expected number of matching reports at each site. For instance, assume that the number of 'abc' reports
retrieved from s1 is not large. To be speci�c, say that only reports '123', '136, and '253' have title 'abc'.
In this case the best strategy is probably to send to s2 query (Q29) with explicit negation conditions for
each one of the s1 reports. (In general it has a NOT RN=b for every b that is a member of provides.)

(Q29) <trep(RN) tr f<O2 A2 X2>g> :- <Ro2 r f<RNo2 rn RN> <O2 A2 X2>g>@s2
AND NOT RN='123' AND NOT RN='136' AND NOT RN='253'

If the number of reports retrieved from s1 is large it may be preferable to ship relation provides to s2

and then send to s2 a query that requests all reports whose report numbers do not appear in provides. If
s2 is not willing to accept a full relation from the mediator, another option is to retrieve from s2 all reports
with title 'abc' and test locally whether these reports are also provided from s1. If they are, the s2 version
can be discarded. In this case, blocking could not really be exploited to reduce the data retrieved from s2.

5.7 Related Work

Query processing in MedMaker adapts many relational processing techniques for the purpose of querying and
integrating semistructured data. Indeed, we believe that the most important contribution is the reduction
of many query processing problems into well-known relational query processing techniques hence avoiding
the complexities of developing a whole new query processing technology, as is done in [BDHS96]. The
normalizer is the module that is mainly responsible for making the reduction: MSL normal form is very
similar to Datalog and/or SQL focused on conjunctive queries, hence making possible the adoption of many
relational query processing techniques:
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� The resolution and uni�cation process implements the well-known \push selections/projections down"
rule. It can also be viewed as magic predicates for non-recursive programs.

� The cost-based optimizer imitates the Wong-Youse� algorithm that was used in INGRES.

� The use of subsumption imitates common subexpressions in relationa algebra trees.

Nevertheless, the reduction to Datalog is not \perfect" in the sense that we would like to work directly
with Datalog. For example, we may have values that may be atomic or nested. In the latter case we are able
to push subobject conditions on them. It would be very di�cult to handle this case had we worked with
Datalog.
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Chapter 6

Performance Evaluation

Chapters 3 and 4 argued that MedMaker provides the appropriate functionality for integration and fusion
of semistructured data coming from dynamic autonomous sources. Then Chapter 5 described MedMaker's
algorithms, discussed their e�ciency, and suggested alternative strategies for the cases where the algorithms
are not expected to deliver the optimum performance. However, the complexity of MedMaker's algorithms
makes di�cult the analytical evaluation of their performance. This chapter experimentally evaluates Med-
Maker. The evaluation, though not complete, it shows MedMaker's e�ciency in many common scenarios,
reveals the weak spots, and illustrates the overall trends.

The performance metric we use in our study is the total time spent for processing a query. In particular,
we consider the total CPU time spent at the mediator (recall that MedMaker does not use disk), the total
network time, and the time spent at the sources processing the queries emitted by the mediator, i.e.,

Total = CPU + network + total sources

We study the following cases and reach the corresponding results:

� When MedMaker is used in a setting similar to a relational system | i.e., when the source data
have regular known structures | its performance scales up linearly as the number of rules, sources,
attributes, and conditions increase. We show this by a series of experiments where we study how
the time spent by each module of MedMaker increases as a function of the number of rules, sources,
attributes of the source objects, and conditions in the query (see Section 6.2).

� Then we study MedMaker's performance in object fusion scenarios where the source schemas are
unknown or scenarios where we have to send every condition to every source. The experiments illustrate
the disadvantages of trying to push the maximum number of conditions down to the sources. The
alternatives of Section 5.6 (i.e., the use of lexicon servers and pushing only one condition in every
query) are evaluated and are shown to outperform the \push maximum" policy (see Section 6.3).

Overall, the network cost | i.e., the time spent on network operations | dominates by orders of mag-
nitude the time spent at any component of MedMaker. The reason is that MedMaker's algorithms use only
CPU and main memory and do not perform disk operations. However, we still want to check the performance
of each MedMaker's algorithm to understand how they scale. Hence we do not only measure the overall cost
of a query (which is the sum of network cost and processing cost at the sources) but we also measure the
cost of each module, i.e., the time spent by each module. We present the setting of the experimentation in
the next section. Then we present in detail results in Sections 6.2 and 6.3.
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Figure 6.1: The architecture used in the experiments

6.1 Experimental Setting

Before we describe the measured costs and how we measure them (Section 6.1.2) we explain why we needed
synthetic sources for the experiments and how we constructed them.

6.1.1 Synthetic Sources

The architecture (see Figure 6.1) used in the experiments di�ers from the typical TSIMMIS architecture in
that it does not use wrappers and sources as they have been described so far. Instead mediators connect to
synthetic OEM sources which are actually MedMaker programs. We can specify each object o of a synthetic
source, say A (see Figure 6.1), by including in the speci�cation SA of the corresponding MedMaker program
the rule

o : � true:

For example, if we want a synthetic source to export the object

<&o1 top f&a11, &a12g>
<&a11 attr1 v1>

<&a12 attr2 v2>

we include the rule

<&o1 top f<&a11 attr1 v1>

<&a12 attr2 v2>

g> :- true.

Note that no special machinery is required for MedMaker to handle rules of the above form. Matching
queries with such speci�cations results in plans that consist of constructors only (one constructor for every
object of the answer).

We use synthetic sources instead of wrappers and real sources because MedMaker emits a large variety
of queries and many of them are too complex to be supported by TSIMMIS wrappers.1 On the other hand

1Even if the underlying source is a relational database which supports all queries over its schema it is impossible to generate,
using the techniques of Chapter 7, a wrapper that supports every query.
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Cost De�nition

QD&AO cost time spent by the QD&AO module
parse cost time spent by the parser module

optimizer cost time spent by the optimizer module
net engine cost time spent by the engine in operations other than querying the sources

total MedMaker cost CPU time spent at MedMaker's site
= QD&AO + parse + optimizer + net engine

source querying cost time spent by the sources for answering the queries emitted by the engine
network cost time spent on the network for transfering queries and results

plan execution cost total time spent for executing the datamerge graph
= net engine + source querying + network

total cost time spent by MedMaker, sources, and network
= QD&AO + parse + optimizer + plan execution
= total MedMaker + source querying + network

Figure 6.2: Costs measured

the synthetic sources support every MSL query. At the same time they facilitate experimentation because
they allow us to easily vary the form and size of the source data.

One might be skeptical about the value of the following experiments, or even about the value of MedMaker,
since they do not run on top of real sources. There are two counterarguments to this skepticism:

1. If the sources support every query over their schema, e.g., they are relational databases, and the
wrappers can translate every MSL query into a corresponding source query then all the results presented
in this chapter hold.

2. If a source does not directly support the queries formulated by the QD&AO and the optimizer then the
wrapper or the mediator must �nd indirect ways to support the queries. Indirect support is discussed in
Chapters 7 and 8. At any rate, most of the query processing techniques we evaluate in this chapter will
still have to be considered. After all it is impossible to solve the query optimization problem for sources
with limited capabilities before we �rst understand the solution for sources with full capabilities.2

6.1.2 Experimentation Environment and Measurements

The experiments were conducted using a modi�ed MedMaker that measures, using the times function of
sys/time.h, the time spent by each client query in each module of MedMaker, the time spent on network
operations, and the time spent at the sources for processing queries emitted by the mediator. We refer to
all of these times as costs. Computing the network cost and the datamerge engine cost is more complicated
and requires a few explanations. For the datamerge engine module we compute two costs:

1. The plan execution cost is the total time required for evaluating the datamerge graph. It includes the
time the engine waited for the sources to process the queries sent by MedMaker.

2. The net engine cost is the time spent by the engine in operations other than querying the sources. The
net engine cost is obtained as follows:

(a) Measure the time t spent for the execution of the query operators of the datamerge graph.

2This statement does not imply that the best query processing strategy is to �rst �nd an \optimal" plan assuming the
sources can handle every query and then �nd indirect ways to support the queries that are not directly supported. Recently
[KHWY] proposed an algorithm that \mixes" the two phases producing very good results. The problem of optimization for
sources with limited capabilities is hard and still open.
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Parameter Base Range

Number of Rules 10 5|40
Number of Sources 5 5|25

Number of Attributes 10 5|25
Number of Query Conditions 1 1|5

Query Result Size 25 objects NA

Figure 6.3: Experimentation parameters: their base values and their range

(b) Subtract t from the plan execution cost.

Note that the net engine cost underestimates the time spent by the datamerge engine because sending
the query, fetching the data from the sources, and storing them in the mediator's memory de�nitely
has a cost on the CPU time of the machine where the mediator operates. This cost should ideally be
accounted in the net engine cost. Nevertheless the observed trends will be the same.

The calculation of network cost is based on the fact that MedMaker's engine executes operations sequen-
tially. In particular, queries are sent to the sources sequentially and no query is sent until the result of the
previous query is received. Under this execution model the time required for receiving the result to a query is
the sum of the time required for query processing at the source and the time spent on the network, assuming
that there is no other simultaneous signi�cant activity on the network and on the processing machine. This
is the case during our experimentation.

We also report the total MedMaker cost that is the CPU time spent at MedMaker's site and the total
cost. Figure 6.2 presents the de�nitions of the measured costs and some important equations regarding the
relationship of the measured costs.

The experiments were guided by C shell scripts that start the client, the mediator, and the sources, giving
them every time a series of queries and speci�cations where either the number of conditions, or rules, or
participating sources, or attributes ranges within the space reported in Figure 6.3. Then the scripts collect
cost pro�les from the sources and the mediators and compute the costs described above. Since random
factors also a�ect the measurements every experiment has been performed �ve times and we report the
average of each set of experiments.

With 90% con�dence the actual values are within 11% of the reported average value for all experiments
where the reported value is greater than 200ms. This means that if, for example, an experiment returns a
value of 1000ms for some cost then with 90% con�dence the actual value is between 890ms and 1110ms. For
costs that have smaller values the intervals are larger because the rounding errors, introduced by the 10ms
granularity of the clock, are greater. In particular, with 90% con�dence for reported average values greater
than 60ms and less than 200ms the actual value is within 26% of the reported value. The only exception
is the net engine cost where the random errors are larger (because the net engine cost is a sum and the
rounding errors accumulate) and the actual value is within 34% of the reported value. Note that the less
credible results are the ones that refer to \small" costs and hence are less in
uential anyway.

The clients, mediators, and synthetic sources of the experiments were run on sponge.stanford.edu

which is an IBM RS6000 370 workstation having 64M memory and running AIX 4.1.4 on a 75MHz CPU.3

6.2 Performance of MedMaker when the Schema is Provided in
the Speci�cations

Our �rst set of experiments evaluates the performance of MedMaker in situations that resemble view spec-
i�cation in relational systems, i.e., when the source data are regular and their regularities are explicitly

3We are thankful to IBM Corp. for providing us the equipment.
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<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top1 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src1 .

<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top1 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src2 .

<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top1 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src3 .

<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top2 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src1 .

<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top2 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src2 .

<&j(J) topmed { <&XA2 attr2 VA2> <&XA1 attr1 VA1> }> :-

<&X top2 {<&JOID key J> <&XA2 attr2 VA2> <&XA1 attr1 VA1> }>@src3 .

Figure 6.4: The structure of the fusion mediator speci�cation for the reference experiment. For space reasons
we show only two sources, four rules, and two attributes

provided in the MSL speci�cation. We show that MedMaker scales up linearly as a function of the pa-
rameters of Figure 6.3 and its additional 
exibility (i.e., the handling of semistructured data and unknown
schemas) does not come at the cost of e�ciency in this conventional scenario.

In particular we test how fusion mediators perform as a function of the number of rules, attributes,
sources, and query conditions. We start by presenting the experiments that show the performance of a
fusion mediator as a function of the number of rules participating in the fusion (see Figure 6.5).

The fusion mediator operates on top of �ve wrappers which are named src1, src2, etc. Each wrapper
conceptually exports 25 objects with label top1, 25 objects with label top2, and so on up to top30. The
ith top1 object of each wrapper has a \key" subobject with value i. The fusion mediator speci�cations of
the experiments use the values of the key objects to fuse together information. Figure 6.4 shows a fusion
mediator which fuses together information of the top1 and top2 objects of wrappers src1, src2, and src3.
In particular, the �rst three rules fuse information from the top1 objects of src1, src2, and src3. The
fourth, �fth, ans sixth rule fuse information from the top2 objects.

In addition to the key the ith topj object also has object-id oj(i). It also has subobjects <&aj 1(i) attr1

1>, <&aj 2(i) attr2 2>, : : :, <&aj 30(i) attr30 30>. However, the fusion mediator does not propagate all
source \attr" objects to the mediator view. For example, the speci�cation of Figure 6.4 accesses only the
attr1 and attr2 objects.

For the experiment of Figure 6.5 we have varied the number of rules used in the mediator speci�cation
from 5 to 40 in steps of 5 rules at a time. For the experiment where the fusion speci�cation has x rules the
�rst �ve of them fuse information from the top1 objects of src1,: : :,src5, the second �ve fuse information
from the top2 objects, and so on. The last �ve fuse information from the topx=5 objects. All rules access and
copy to the mediator view the subobjects attr1 to attr10 of the source \top" objects. (For this experiment
we keep the number of attributes to 10 as Figure 6.3 suggests.)
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Figure 6.5: Performance of fusion mediator as a function of number of rules

The following single condition query that collects the object-id's of the top-level mediator objects is sent
to the mediators.

<ans X> :- <X topmed {<attr1 1>}>.

MedMaker matches the query with the mediator speci�cations and develops a plan which sends to each
source x=5 queries. The �rst query going to a source, say src1, retrieves the \key" subobjects of the top1
objects that have an attr1 subobject with value 1. The second one retrieves the keys of the top2 objects
that have an attr1 subobject with value 1, and so on. Each one of these queries retrieves 25 keys because
each wrapper exports 25 top1 objects, 25 top2 objects, etc, and every \top" object has a \key" and an
attr1 subobject with value 1.

Figure 6.5 shows the performance of the fusion mediator described above as a function of the number
of rules. The left diagram presents the cost of the QD&AO, the parser, the net engine cost (recall, the net
engine cost does not include the cost of querying the sources), and the total mediator cost. As expected, the
QD&AO and the net engine cost roughly follow a function of the the form a + b(number of rules) where
a and b are constants. The factor a is due to initialization costs. The factor b is justi�ed because as the
number of rules increases QD&AO has to do more matches and the datamerge graphs are bigger.

Note that we also plot the parse cost in Figure 6.5. Of course, not a lot can be said about the imple-
mentation of MedMaker's very typical Yacc based parser. However, it provides a point of reference for the
cost of the other modules. For example, it is interesting to note that parsing is in general more expensive
than QD&AO. Since the most expensive activity in both parsing and QD&AO is the allocation of memory
for representing and transforming the query and the mediator speci�cation we conclude that QD&AO does
fewer memory allocation operations than the parser. Note that QD&AO does fewer memory allocations
despite the fact that its output, i.e., the datamerge graph, is almost as large as the output of the parser, i.e.,
the datamerge graph has almost as many nodes as the parse tree of the mediator speci�cation.

The right diagram of Figure 6.5 illustrates the network cost and the total cost, i.e., the sum of mediator
cost, network cost, and source processing cost. Note that the network cost is almost linear in the number
of rules. This is due to the fact that the network cost is proportional to the number of queries emitted
by the mediator which in turn is equal to the number of rules of the mediator. Hence, the performance of
MedMaker scales linearly with the number of rules in the common scenario tested by the experiment.

Before we proceed to experiments illustrating the performance as a function of the number of sources,
attributes, or query conditions we note the following two conventions followed by our experiments and their
presentation:
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Figure 6.6: Performance of fusion mediator as a function of the number or participating sources

1. We do not plot in any of the �gures the optimization cost because it is very small (always below 20ms).
This is expected because the optimizer does not generate alternative plans.4 Furthermore, we do not
plot the parsing cost in any �gure other than 6.5. Nevertheless, the optimization and parsing cost are
parts of the \total MedMaker" and \total" costs.

2. We do not perform experiments with more than 40 rules because all our experiments have to observe
a limit of around 60 queries to the sources for every plan. This is because the server support library
dedicates a separate process to every query (so that the system does not fail when a query fails) but
the current implementation does not kill the query service process until the session is �nished.

Now we perform experiments for studying the e�ect of the number of sources, query conditions, and
attributes on the query processing cost.

E�ect of number of sources: Figure 6.6 corresponds to a fusion mediator with x sources and x rules,
where x ranges from 5 to 25. The ith rule collects the top1 objects of the ith source. Costs scale up almost
linearly as the number of sources increases. Furthermore, by comparing Figure 6.5 with Figure 6.6 we see
that there is no important di�erence in the network cost whether x rules access information from x sources
or x=5 sources. This is expected because in both cases x conjunctive queries are executed sequentially. Had
the mediator used disjunction to group together conjunctive queries directed to the same source it would be
more e�cient to have fewer sources.

Notice that the total cost is higher when x rules access x sources instead of x=5 sources. The reason is
that in the former case more processes run, inducing more context switches. Had the synthetic sources run
in di�erent machines we would not have this performance discrepancy.

E�ect of number of attributes: For this experiment we �x the number of rules at 10 and the number
of sources at 5. Then the number of attr objects accessed by the rules and propagated to the \topmed"
objects ranges from 5 to 25 in steps of 5. For example, in the step where the number of attributes is 5 the
�rst rule of the fusion mediator speci�cation (see Figure 6.4) is modi�ed as shown in Figure 6.8 and in the
step where the number of attributes is 10 is is modi�ed as shown in Figure 6.9.

Figure 6.7 shows that the e�ect of the number of attributes on the performance of QD&AO is minimal.
In particular, the QD&AO cost increases by 40% when the number of attributes grows from 5 to 25. The
reason is that when the object patterns of the mediator speci�cation mention many attributes they are larger

4Indeed, the reader may wonder why the optimizer takes 20ms to complete its straightfoward (relatively to the QD&AO)
task. The reason is that the query strings that are sent to the sources are formulated in an inne�cient way which involves many
string copies.
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Figure 6.7: Performance of fusion mediator as a function of number of attributes

<&j(J) topmed { <&XA5 attr5 VA5>

<&XA4 attr4 VA4>

<&XA3 attr3 VA3>

<&XA2 attr2 VA2>

<&XA1 attr1 VA1>

}> :-

<&X top1 {<&JOID key J>

<&XA5 attr5 VA5>

<&XA4 attr4 VA4>

<&XA3 attr3 VA3>

<&XA2 attr2 VA2>

<&XA1 attr1 VA1>

}>@src1.

Figure 6.8: Speci�cation rule with 5 attributes
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<&j(J) topmed { <&XA10 attr10 VA10>

<&XA9 attr9 VA9>

<&XA8 attr8 VA8>

<&XA7 attr7 VA7>

<&XA6 attr6 VA6>

<&XA5 attr5 VA5>

<&XA4 attr4 VA4>

<&XA3 attr3 VA3>

<&XA2 attr2 VA2>

<&XA1 attr1 VA1>

}> :-

<&X top1 {<&JOID key J>

<&XA10 attr10 VA10>

<&XA9 attr9 VA9>

<&XA8 attr8 VA8>

<&XA7 attr7 VA7>

<&XA6 attr6 VA6>

<&XA5 attr5 VA5>

<&XA4 attr4 VA4>

<&XA3 attr3 VA3>

<&XA2 attr2 VA2>

<&XA1 attr1 VA1>

}>@src1.

Figure 6.9: Speci�cation rule with 10 attributes
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Figure 6.10: Performance of fusion mediator as a function of number of query conditions

and hence applying a uni�er on them is more expensive. The total cost increases by 13% when the number
of attributes grows from 5 to 25. The increase is primarily due to the fact that the queries sent to the sources
mention more attributes and hence induce an increased \matching" activity. On the other hand the network
cost is essentially una�ected by the number of attributes. ( The 
uctuations observed in Figure 6.7 are
within an unimportant 3% of the ideal 
at curve (though they look bigger because the o�set of the vertical
axis is 740) and are most probably due to time quantumization errors.) A 
at network is expected because
neither the number of queries emitted to the sources nor the size of the query results depend on the number
of attributes. (Recall, the queries retrieve keys only.)

Overall the increase of the number of attributes causes small (if any) performance increases and we
conclude that mediators with large numbers of attributes are e�cient.

E�ect of number of conditions: For this experiment we �x the number of sources to 5, the number of
rules to 10, and the number of attributes to 10 and then we issue the following four queries which contain
an increasing number of subobject conditions:

<ans X> :- <X topmed {<attr1 1> <attr2 2>}>.

<ans X> :- <X topmed {<attr1 1> <attr2 2> <attr3 3>}>.

<ans X> :- <X topmed {<attr1 1> <attr2 2> <attr3 3> <attr4 4>}>.

<ans X> :- <X topmed {<attr1 1> <attr2 2> <attr3 3> <attr4 4> <attr5 5>}>.

Note that each condition can match with more than one rule head, i.e., each condition can be satis�ed by
more than one sources, hence leading to the fusion query processing problems discussed in Chapter 5. We
avoid these problems by modifying the mediator speci�cation so that each subobject condition can match
with a subobject of only one rule. In particular, only the �rst rule exports an attr1 subobject, only the
second rule exports an attr2 subobject and so on up to attr5. Hence the mediator speci�cation is modi�ed
as shown in Figure 6.11. In this way we avoid the fusion query processing problems (fusion query processing
techniques are evaluated in the next section) and we study the e�ect of the number of conditions in a setting
which is more similar to a conventional system where the schema information indicates where each condition
should be pushed.

Figure 6.10 shows that the total cost and the network cost are linear to the number of query conditions.
This is expected because the number of queries emitted to the sources is equal to the number of subobject
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<&j(J) topmed {<&XA1 attr1 VA1>}>

:- <&X top1 {<&JOID key J> <&XA1 attr1 VA1>}>@src1.

<&j(J) topmed {<&XA2 attr2 VA2>}>

:- <&X top1 {<&JOID key J> <&XA2 attr2 VA2>}>@src2.

<&j(J) topmed {<&XA3 attr3 VA3>}>

:- <&X top1 {<&JOID key J> <&XA3 attr3 VA3>}>@src3.

<&j(J) topmed {<&XA4 attr4 VA4>}>

:- <&X top1 {<&JOID key J> <&XA4 attr4 VA4>}>@src4.

<&j(J) topmed {<&XA5 attr5 VA5>}>

:- <&X top1 {<&JOID key J> <&XA5 attr5 VA5>}>@src5.

Figure 6.11: The fucion mediator speci�cation for testing the e�ects of query conditions number

conditions in the query. In particular, the query retrieving attr1 is sent to src1, the query retrieving attr2

is sent to src2 and so on. The QD&AO cost also increases when the number of conditions increases because
every condition has to be separately matched to the rule heads. However, all cost increases are propotional
or less than proportional to the number of conditions.

Overall, the presented experiments illustrate that MedMaker is e�cient when the mediator speci�cation
indicates to which source each condition should be pushed. In particular, the costs scale up linearly (or less
than linearly) as the number of rules, sources, attributes and query conditions increases. This scenario is
similar to query decomposition in relational databases whereas the schema information indicates to which
source each condition should be pushed. In the next section we study MedMaker's performance in cases
where every condition may be pushed to more than one sources.

6.3 Evaluation of Optimizations for Fusion and Unknown Schema

Fusion mediators are ine�cient when every condition has to be pushed at many sources. This is the case
when we have mediators such as the one of Figure 6.12 (which is actually used for our experimentation.) In
this section we show that MedMaker's policy to push all conditions to the sources is indeed more expensive
than the two alternatives suggested in Section 5.6. For convenience, we summarize the two alternatives again
and we also specify the way in which we tested each of them:

� Use of a lexicon service: Assume that the mediator can ask a lexicon service of a wrapper whether
the wrapper exports (sub)objects with some label l. If the wrapper gives a negative answer then no
query that asks for l is sent to this wrapper.

MedMaker's implementation does not yet include lexicon services as described above. For the purposes
of the experimentation we included in the QD&AO a function f , which is called whenever a condition
is pushed to a wrapper that may not satisfy this condition, and decides whether a condition can be
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<&X topmed {<&V1 V2 V3>}> :- <top1 {<&V1 V2 V3> <key X>}>@src1.

<&X topmed {<&V1 V2 V3>}> :- <top2 {<&V1 V2 V3> <key X>}>@src2.

Figure 6.12: Fusion mediators with two sources of unknown schema

pushed to this wrapper. For example, consider matching the condition <topmed f<l 1>g> with the
�rst rule of Figure 6.12. From the structure of the rule it is not clear whether <l 1> should be pushed
to src1. The function f will be called by MedMaker before the uni�cation routine5 matches the query
condition label l to the label variable V2 that appears in the head of a rule. In particular, the label l
and the wrapper name src1, where V2 comes from, will be given to f which decides whether it makes
sense to push l to src1. If the decision is negative MedMaker fails the match of the condition with
the �rst rule.

� Push only one condition in every query: Even after the use of the lexicon, every condition may
have to be pushed to many sources. However, trying to push as many conditions as possible in every
query leads to an exponential explosion described in Section 5.6. It is more e�cient to send to each
source one query for every condition. The rest of the fusion can be done at the mediator. The described
\push only one condition" optimization is also not implemented but we simulated it for the purposes
of the experimentation as explained below.

For comparing the three policies we use mediators such as those of Figure 6.12. We vary the number of
sources from two (which is actually the one shown in Figure 6.12) to �ve. Correspondingly, the number of
rules varies from two to �ve. Then the following query is issued

<ans X> :- <X topmed {<attr1 1> <attr2 2>}>.

Note that the attr1 and attr2 conditions have to be pushed to all sources. For comparing the three policies
we set the sources so that label attr1 appears only at the �rst source and the label attr2 appears only at
the second source and so on up to attr5. This information is known to the lexicon service functions but it
is not explicitly shown in the speci�cations.

Performance of the \push maximum conditions" policy The implemented policy leads to x2

datamerge rules where x is the number of sources (see Section 5.6 for a discussion on why so many datamerge
rules are derived.) Each datamerge rule has two conditions; an attr1 condition andan attr2 condition. The
evaluation of each datamerge rule requires one query, if both conditions are pushed to the same source, or
two queries if they are pushed to di�erent sources. Overall, 2x(x � 1) + x queries are emitted, i.e., the
number of emitted queries is quadratic in the number of sources. Note that only 2 queries (2 is the number
of query conditions) return nonempty answers. Nevertheless the other 2x(x� 1) + x� 2 queries also have a
processing and network cost and hence the network cost and the total cost look like quadratic curves. The
net engine cost also has a quadratic component in it the cost of processing the 2 nonempty results dominates
the quadratic component. (Indeed, the quadratic component can be seen if we take a 60ms o�set.)

The quadratic nature of these costs may prohibit scaling to large numbers of sources. We show next that
the lexicon approach and the \push only one condition" approach scale do not have such scaling problems.

5see algorithm in Figure 5.3 of Chapter 5
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<&X top V> :- <&X top V>@middle1

<&X top V> :- <&X top V>@middle2<&X top V> :- <&X top V>@middle1

Figure 6.13: Mediator top

Performance of the lexicon approach The lexicon approach (see Figure 6.15) has essentially a constant
cost. ( The 
uctuations of the network cost are within 6% of the average and should be explained to errors
in the measurements.) The constant cost is justi�ed because regardless of the number of involved sources,
MedMaker emits only two queries; the �rst query retrieves the src1 objects with an attr1 subobject and
the second query retrieves the src2 objects with an attr2 subobject. We should keep in mind that the
performance of the lexicon approach depends on our assumption that only one source has attr1 and only
has attr2. If both sources had both attributes then the performance of the lexicon policy would be the
same with the performance of the \push maximum".

Performance of the \push only one condition" approach We simulate the \push only one condition"
policy, for the purposes of the experiment, by splitting the mediator into three mediators. The two of them,
named middle1 and middle2 run the speci�cation of Figure 6.12. The third mediator, named top, uses the
other two as sources, as shown in Figure 6.13, and it also has a lexicon service function saying that attr1
comes only from middle1 and attr2 comes only from middle2. After we give the query, because of the
lexicon service, only the datamerge rule that pushes attr1 to middle1 and attr2 to middle2 \survives".
Hence, a attr1 query is sent to middle1 which decomposes it into attr1 queries sent to the sources. Similarly
attr2 is pushed to middle2. Observe that the sources receive exactly the queries they would receive by
the \push only one condition" policy. We calculate the cost of the policy by summing up the processing
time at src1 to src5, and the network costs in the communication between the \middle" mediators and
src1 to src5. Note that the network cost between the top mediator and the \middle" mediators is ignored
because in an actual implementation of the \push only one condition" this communication would be done
inside the mediator. We do not measure QD&AO costs, net engine, and optimizer cost because they will be
very di�erent in an actual implementation of the \push only one condition" policy.

The total and network cost of the \push only one condition" approach are proportional to the number
of sources (see Figure 6.16.) This is expected because 2x queries are emitted by the mediator, where x is
the number of sources.

Figure 6.17 compares the three policies. The lessons learned are the following:

� The lexicon policy is superior if each condition is satis�ed by only one source. However, it presumes
the existence of a lexicon service that knows which sources may satisfy a given condition.

� The \push only one condition" approach is a clear winner because it is applicable in all fusion scenarios.
It is an open issue to seamlessly integrate the \push only one condition" policy, which is optimal
for fusion queries, with the \push maximum conditions" policy which is optimal for conventional
conjunctive queries and views.

We should keep in mind that the above results refer to a limited class of queries and mediator speci�cations
as well as a very speci�c cost measure. Future work should address more complex queries and mediator
speci�cations.

Note also that the experimental results are based on the assumption that the sources can support any
query which is given to them. This will often not be the case. The next two chapters show how a query can
be answered even though it may not be directly supported by the corresponding source. Nevertheless, we
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Figure 6.14: Performance of fusion mediator with unknown schema and two query conditions
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Figure 6.15: Performance of fusion mediator with lexicon service and two query conditions

100

200

300

400

500

600

700

800

2 2.5 3 3.5 4 4.5 5

C
os

t x
10

m
s

#Sources

Effect of #Sources

Total Cost
Network

Figure 6.16: Performance of fusion mediator that pushes one condition in each query (total and net cost
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Figure 6.17: Comparison of the three alternatives for query processing with unknown schemas

provide limited guarantees about the performance in scenarios where the sources have limited capabilities.
Future work should address the issue of performance in the presence of limited capabilities.
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Chapter 7

Wrapper Generation

In this chapter we describe a wrapper generation system for TSIMMIS. We recall from Chapter 3.1 that
wrappers are the software components that convert data and queries from one model to another. Wrappers
receive common model queries (MSL in our case) from mediators or from the applications. The wrapper
for each source converts the query into one or more commands or queries understandable by the underlying
source. The wrapper receives the results from the source, and converts them into a model understood by
the application.

During the �rst stages of the TSIMMIS project [PGMW95] we developed hard-coded wrappers for a
variety of sources, including legacy systems (see Chapter 3.1. We have observed, like everyone who has built a
wrapper, that writing them involves a lot of e�ort [A+91, C+95, EH86, FK93, Gup89, LMR90, MY89, T+90].
However, we have also observed that only a relatively small part of the code deals with the speci�c access
details of the source. A lot of code, on the other hand, is either common among wrappers (deals with
bu�ering, communications to the application, and so on) or implements query and data transformations
that could be expressed in a high level, declarative fashion.

Based on these observations we developed a wrapper implementation toolkit for rapidly building wrappers.
The toolkit contains a library of commonly used functions, such as for receiving queries from the application
and packaging results. We've already discussed some of these functions in Chapter 3.1. The toolkit also
contains a facility for translating queries into source-speci�c commands and queries, and for translating
results into a model useful to the application.

We focus on the query translation component of the toolkit, which we refer to as the converter. (In
Section 7.4 we will describe the other toolkit components and how the converter is integrated with them.)
The implementor gives the converter a set of templates that describe the queries accepted by the wrapper.
If an application query matches a template, an implementor-provided action associated with the template
is executed to produce the native query for the underlying source. Note, a native query is not necessarily a
string of a well-structured query language (e.g. SQL). In general, the native query may refer to any program
used to access and retrieve information from the underlying source.

EXAMPLE 7.0.1 Note, the ideas behind wrapper generation are not speci�c to the MSL query language
which is used as the query language for TSIMMIS. Indeed, the introductory examples assume that we use
the relational data model and the SQL query language.

To illustrate, consider an application that issues SQL queries. One of the sources it accesses has limited
functionality, as is true for many sources encountered in a heterogeneous environment. For this illustrative
example, assume that the source can only do selection on attribute dept of some table, followed by a
projection. This ability may be speci�ed as the following template.

select $X.$Y from $X where $X.dept=$Z

The symbols $X, $Y and $Z represent placeholders that have to be bound to speci�c constants to produce a
valid SQL query. Assume that the following query arrives at the wrapper and is given to the converter:
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Figure 7.1: (a) Accessing information through wrappers (b) Supported queries.

select emp.name from emp where emp.dept='toy'

.This query matches the template with the bindings $X = "emp", $Y = "name" and $Z = "'toy'". Given
the match, the actions associated with the template would then generate the necessary native query to do
the actual search on the source. For example, if the underlying source were a �le system the actions could
produce a \grep" command to search for the string $Z in say columns 10-20 of �le $X. Out of the matching
lines, it would return the characters between the string $Y and some termination character. 2

Example 7.0.1 illustrates a very simple template matching facility that could be easily implemented using
Yacc-like tools. However, since the matching facility is based entirely on string matching, it does not exploit
the semantics of the common query language. The following examples show that if converters \understand"
the queries which they are translating, then they can successfully handle many more queries.

EXAMPLE 7.0.2 Consider the following query template:

select $X.$Y from $X where $X.sal=$Z1 and $X.dept=$Z2

Syntactically, only queries where the $X.sal and $X.dept appear in exactly the speci�ed order match this
template. The query

select emp.name from emp where emp.dept='toy' and emp.sal=100

would not match the template. If we wanted to process this type of query we would have to de�ne a second
template. In general, we would have to consider an exponential number of orderings of the terms in the
where clause. It is not practical to have all these templates, especially since all of them would have almost
identical actions associated with them. 2

EXAMPLE 7.0.3 Consider a data source that can only do selections on attribute dept and does not
understand the notion of projecting out attributes. Such a source can be described with the following
template:

select * from $X where $X.dept=$Z

The following query does not match this template because it includes a projection:

select emp.name from emp where emp.dept='toy'

However, the wrapper might be able to process the above query by transforming it into one without a
projection and then doing the projection on the returned answers. This approach would allow the wrapper
to leverage its own capability to handle a much wider class of queries than those speci�ed by the template.

As we will see, our wrapper toolkit can handle this type of query transformation. When the converter
is given a query, it generates not only commands for the underlying source, but also a �lter describing
additional processing on the results, if any is required. In our example, the �lter would specify a projection
over the name attribute. 2
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In Example 7.0.2 the converter must understand the notion of selection and conjunctive logical expressions.
In Example 7.0.3 the converter must understand projections and the fact that a projection over emp.name
can be obtained a-posteriori from a projection over *. While this knowledge gives the converter the ability
to handle more queries, it does mean that the converter must be targeted to a particular incoming query
language. Being language speci�c does not pose a problem for converters because our goal is to develop
many wrappers for a given common query language, so it is to our advantage to exploit the features of the
common query language. Furthermore, most declarative query languages are based on common principles,
so our converter should be easy to modify to other query languages.

Of course, our converters are targeted for the MSL query language. (SQL was only used in our initial
examples to motivate our ideas.) The converter is con�gured with templates written in a Query Description
and Translation Language (QDTL). Each template is associated with an action that generates the commands
for the underlying source.

Once con�gured, the converter takes as input an MSL query, and generates commands for the source and
a �lter to be applied to the results. (Actually, in our current design, the converter accepts only a subset of
MSL; see Section 3.1.) The converter will process:

� Directly supported queries. These are queries that syntactically match a template.

� Logically supported queries. These are queries that produce the same results as a directly supported
query. We use the notion of logical equivalence to detect queries that fall in this class.

� Indirectly supported queries. These are queries that can be executed in two steps: �rst a directly
supported query is executed, and then a �lter is applied to the results of the �rst step. We have
appropriately extended the notion of subsumption in order to detect the queries that fall in this class.

Figure (7.1.b) graphically shows the types of accepted queries. Thus, though QDTL descriptions look like
Yacc grammars { suitably modi�ed for the description of queries { our converter handles a much larger class
of queries than the class of directly supported queries that would be handled by a traditional parsing facility
such as Yacc. Furthermore, our converter introduces the following innovations:

� A designer can de�ne the functionality of each source succinctly and clearly through a few QDTL
templates. Note, a QDTL description is more than a list of \parameterized queries" since it allows the
description and translation of in�nite sets of queries. (See Section 7.3.)

� The converter, in cooperation with the �lter processor, automatically extends the query capabilities
of sources that have limited functionality. Note that unlike relational and object - oriented databases,
where typically all possible queries over the schema are allowed, arbitrary information sources, e.g.,
legacy systems, may permit only limited sets of queries. The automatic extension of query abilities
allows us to bring di�erent sources to the same level of functionality and then to integrate them more
easily.

� The converter, together with the other functions of the toolkit, makes it possible to implement wrappers
rapidly.

One important thing to notice is that the capabilities of wrappers can be \gracefully extended." That is,
one can design quickly a simple wrapper with a few templates that cover some of the desired functionality,
probably the subset that is most urgently needed. Then templates can be added as more functionality is
required.

In Section 7.1 we give a detailed example that shows how QDTL is used and the types of queries it
can handle. Indirectly supported queries and the notion of query subsumption are further discussed in
Section 7.2, while Section 7.3 introduces additional powerful QDTL features such as nonterminal templates
and metapredicates. In Section 7.4 we discuss the architecture of wrappers and the wrapper toolkit; we also
discuss how the converter is used by the wrapper toolkit to rapidly implement wrappers. Section 7.5 focuses
on the query translation algorithm at the heart of the converter. This is the algorithm that maps input
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queries to templates and generates �lters. The section gives an example-driven description of the algorithm,
and the full details can be found in the appendix. Finally, Section 7.6 discusses related work.

7.1 A Detailed Example

We illustrate the use of our converter and QDTL using the following simple example. Say we wish to build
a wrapper for a university \lookup" facility that contains information about employees and students. (This
example is motivated by an actual service o�ered by our department at Stanford). The lookup facility
is accessed from the command line of computers and o�ers limited query capabilities. In particular, it can
return only the full records of persons, including all �elds such as \last name," \�rst name," and \telephone."
There is no way for the user to retrieve only one �eld, e.g., the telephone number, for a person. Furthermore,
the only queries that are accepted by the lookup facility are:

1. Retrieve person records by specifying the last name, e.g.,

(L30) lookup -ln Smith

2. Retrieve person records by specifying the �rst and the last name, e.g.,

(L31) lookup -ln Smith -fn John

3. Retrieve all person records by issuing the command

(L32) lookup

The queries accepted by the lookup facility can be described in our Query Description and Translation
Language (QDTL). As discussed earlier, a QDTL description consists of a set of templates with associated
actions. Below we present description D1 which consists of three query templates QT1.1, QT1.2, and QT1.3.
For simplicity, we do not yet give the associated actions.

(D1) (QT1.1) Query ::= *O :- <O person f<last name $LN>g>
(QT1.2) Query ::= *O :- <O person f<last name $LN> <first name $FN>g>
(QT1.3) Query ::= *O :- <O person V>

Each query template appears following the ::= and is a \parameterized query." The identi�ers preceded
by $, such as $LN and $FN, are constant placeholders representing expected constants in the input query.
Upper case identi�ers, such as O, are variable placeholders denoting variables that are expected at that point
in the input query. Note, the variable appearing in the query does not have to have the same name as the
template variable.

Each template describes many more queries than those that match it syntactically. More speci�cally,
each template describes the following classes of queries:

� Directly supported queries. A query q is directly supported by a template t if q can be derived by
substituting the constant placeholders of t by constants and the variables of t by variables. For
example, query Q33 is directly supported by template QT1.1 by substituting P for O and 'Smith' for
$LN.

(Q33) *P :- <P person f<L last name 'Smith'>g>

� Logically supported queries. A query q is logically supported by template t if q is logically equivalent
to some query q0 which is directly supported by t. Two queries q and q0 are equivalent if they produce
the same result regardless of the contents of the queried source. For example, the following queries are
logically supported by template QT1.2 although they are not directly supported:
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*O :- <O person {<first_name 'John'> <last_name 'Smith'>}>

*O :- <O person {<last_name 'Smith'>}> AND <O person {<first_name 'John>}>

*O :- <O person {<LO last_name 'Smith'>}>

AND <O person {<LO L V> <first_name 'John'>}>

All of these queries are equivalent to the following query Q34, which is directly supported by template
QT1.2:

(Q34) *O :- <O person f<last name 'Smith'> <first name 'John'>g>

� Indirectly supported queries. A query q is indirectly supported by a template t if q can be \broken
down" into a directly supported query q0 and a �lter that is applied on the results of q0. We give a
de�nition of indirect support in Section 7.2; for now we present an example. Consider the following
query:

(Q35) *Q :- <Q person f<last name 'Smith'> <role 'student'>g>

This query is not logically supported by any of the templates of description D1. However, our converter
realizes that this query is subsumed by the directly supported query

(Q36) *Q :- <Q person f<last name 'Smith'>g>

This means that the answer to Q36 contains all the information necessary to answer Q35. Thus, the
converter matches Q35 to template QT1.1 as if it were Q36, binding $LN to 'Smith' and O to Q. In
addition, the converter generates the �lter:

*O :- <O person f<role 'student'>g>

The �lter is an MSL query that is applied to the result of query Q36 to produce the result of query
Q35.

Note, we often say \the description d supports the query q directly, logically, or indirectly" meaning that a
template t of d supports the query q directly, logically, or indirectly.

7.1.1 Formulation of the Native Query

QDTL templates are accompanied by actions that formulate the native queries for the source. For our
converter, the actions are written in C, although we could have selected any other language. Let us extend
description D1 with actions that formulate native queries such as L30, L31, and L32.

(D2) (QT2.1) Query ::= *O :- <O person f<last name $LN>g>
(AC2.1) f sprintf(lookup query, 'lookup -ln %s', $LN) ;g
(QT2.2) Query ::= *O :- <O person f<last name $LN> <first name $FN>g>
(AC2.2) f sprintf(lookup query, 'lookup -ln %s -fn %s', $LN, $FN) ; g
(QT2.3) Query ::= *O :- <O person V>

(AC2.3) f sprintf(lookup query, 'lookup') ; g

To illustrate, consider again the input query Q34:
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*O :- <O person {<last_name 'Smith'> <first_name 'John'>}>

This query matches template QT2.2. by binding placeholder $LN to 'Smith' and $FN to 'John'. Then,
the C function

sprintf(lookup_query, 'lookup -ln %s -fn %s', $LN, $FN)

is executed. In this action, $LN and $FN behave as C variables that at execution time contain the values
'Smith' and 'John' respectively. The e�ect of this action is to write the string

'lookup -ln Smith -fn John'

in the variable lookup query.
This completes the job of the converter on this query. Then, the implementor-provided part of the

wrapper takes over, submits the string lookup query to the source and waits for an answer.

7.2 Query Subsumption

In Section 7.1 we said that query Q35 was subsumed by Q36 because the former had an additional condition
on the \role" subobject. Thus query Q35 selects a subset of the objects obtained by the subsuming query Q36.

A di�erent type of subsumption, speci�c to object oriented data, occurs when the subsumed query
extracts subobjects obtained by the subsuming query. For example, consider the following query Q37 that
retrieves the first name subobjects of person objects with last name 'Smith'

(Q37) *F :- <O person f<F first name X> <last name 'Smith'>g>

Query Q37 is subsumed by the following query Q38, which retrieves the full person objects of persons with
last name 'Smith' and an unspeci�ed �rst name.

(Q38) *O :- <O person f<F first name X> <last name 'Smith'>g>

Notice that Q37 and Q38 have exactly the same conditions. However, Q38 subsumes Q37 because the
person objects retrieved by the latter contain the first name objects required by the former. The following
de�nitions formalize the notions we have illustrated.1

De�nition 7.2.1 (Object containment) Object O is contained in another object O0 if and only if

� Either O and O0 are identical, i.e., they have identical object-id, label, and value; or

� O is a subobject (direct or indirect) of O0.

2

De�nition 7.2.2 (Query subsumption) A query q is subsumed by another query q0 if each answer object
for q is contained in some answer object of q0.2 2

De�nition 7.2.3 (Indirect support) A query q is indirectly supported by a query q0 if

1. q0 subsumes q, and

2. there is a �lter f that when applied on the result of q0 produces the result of q.

2

1Note, we have already de�ned containment using MSL patterns in Chapter 5. However, the following de�nitions are
independent of MSL because we want to make clear the applicability of these ideas to any (object) model.

2Note, more general forms of query subsumption may be de�ned.
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A �lter query is formally de�ned as follows:

De�nition 7.2.4 (Filter of a query qs with respect to input query q) Assume that qs de�nes the
predicate answers and q de�nes the predicate answer. A �lter qf of qs wrt q is any query of the form

answerf (X) : �answers(Y ); hcond(Y )i

where hcond(Y )i is a set of subgoals member and object such that

� every subgoal member(Sp; Sc) of hcond(Y )i is reachable from Y ,

� every subgoal object(O; label ; value) of hcond(Y )i is reachable from Y , and

� answerf (x) holds if and only if answer(x) also holds

2

We will say that a template t indirectly supports a query q if t directly supports a query q0 that indirectly
supports q. Note, query subsumption does not necessarily imply indirect support. For example, consider
the following query

(Q39) *F :- <person f<F first name X>g>

that subsumes Q37, since it retrieves all first-name objects. However, Q39 does not indirectly support
Q37, since given a first-name object in the result of Q39, we can not tell whether it is a subobject of a
person with last name 'Smith'.

7.2.1 Maximal Supporting Queries

Notice that given a query q there may be more than one query that supports q, and these queries may not
be logically equivalent. For example, query Q35 on page 76 is supported by query Q36 and also by the query

(Q40) *O :- <O person V>

that retrieves all person objects.
Note, query Q40 also subsumes query Q36. Thus, Q36 derives fewer unnecessary answers than Q40.

From a performance point of view it is better for the wrapper to send Q36 to the source (after the necessary
transformation to a native query) rather than Q40, because the former contains more conditions of the
original query Q35. Indeed, for our example, query Q36 is the best query directly supported by description D1
that supports query Q35 because Q36 pushes to the source as many conditions as possible. We will say that
Q36 is a maximal supporting query for Q35.

De�nition 7.2.5 (Maximal supporting query) A query qs is a maximal supporting query of query q
with respect to description d, if

� qs is directly supported by d,

� qs indirectly supports q, and

� There is no directly supported query q0s that indirectly supports q, is subsumed by qs, and is not
logically equivalent to qs.

2

Note, there may be more than one maximal supporting query for a given query. For example, assume
that a source allows us to place a condition on exactly one subobject of the person objects. This source is
speci�ed by the QDTL description (actions not shown):
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(D3) (QT3.1) Query ::= *O :- <O person f<$L $V>g>

For this source, consider input query Q34. This query has two maximal supporting queries:

(Q41) *O :- <O person f<last name 'Smith'>g>
(Q42) *O :- <O person f<first name 'John'>g>

Our converter actually considers all possible maximal supporting queries by considering di�erent ways
in which the input query can match the templates of a description. Once the converter selects a maximal
supporting query, it executes the actions associated with that particular maximal query. Choosing the opti-
mal maximal subsuming query (when there is more than one) requires knowledge of the contents, semantics,
and statistics of the database; our initial implementation does no optimization and simply selects one of the
maximal supporting queries.

7.3 Nonterminals and Other QDTL Features

QDTL allows the use of nonterminals to construct grammars that describe more complex sets of supported
queries. To illustrate, say that our lookup facility lets us place selection conditions on zero or more of the
�elds of its records. That is, we can issue commands such as 'lookup -fn John', 'lookup -fn John -role

faculty', 'lookup -role student', and so on. Explicitly listing all possible combinations of conditions
in our templates would be impractical. (If there are 10 lookup �elds, there would be 210 templates.)

With nonterminals, this functionality can be described succinctly. For instance, assuming only three
�elds, first name, last name, and role, we can use the following description (without actions for now):

(D4) /* A description with nonterminals */

(QT4.1) Query ::= *OP :- <OP person f OptLN OptFN OptRoleg> /*Query Template*/

(NT4.2) OptLN ::= <last name $LN> /*Nonterminal template*/

(NT4.3) OptLn ::= /* empty nonterminal template*/

(NT4.4) OptFN ::= <first name $FN>

(NT4.5) OptFN ::= /* empty */

(NT4.6) OptRole ::= <role $R>

(NT4.7) OptRole ::= /* empty */

Nonterminals are represented by identi�ers that start with an underscore ( ). Every nonterminal has a
de�nition that consists of a set of nonterminal templates. For example nonterminal OptRole is de�ned by
nonterminal templates NT4.6 and NT4.7.

A query q is directly supported by a query template t that contains nonterminals if q is directly supported
by one of the expansions of t. An expansion of t is obtained by replacing each nonterminal n of the query
template t with one of the nonterminal template that de�ne n. For example, the query

(Q43) *O :- <O person f<last name 'Smith'> <role 'professor'>g>

is directly supported by template QT4.1 because Q43 matches with the expansion

(E44) *OP :- <OP person f<last name $LN> <role $R>g>

This expansion is derived from query template QT4.1 by replacing the nonterminal OptLN with the nonter-
minal template NT4.2, the nonterminal OptFN with the nonterminal template NT4.5, and the nonterminal
OptRole with the nonterminal template NT4.6.
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7.3.1 Actions and Attributes Associated with Nonterminals

Nonterminal templates have associated actions, just like query templates. When a query successfully matches
with a template, the action for the nonterminal template used during the matching is executed. In addition,
every nonterminal n is associated with an attribute that is accessible from the templates that use n and the
templates that de�ne n. These attributes are similar to the attributes that Yacc associates with nonterminals,
and are used to generate the native query of the underlying source.

Description D4 can be augmented with code to generate the required lookup native query as follows. Note
that in the C code, a nonterminal attribute is represented by $ followed by the name of the nonterminal.

(D5) (QT5.1) Query ::= *OP :- <OP person f OptLN OptFN OptRoleg>
(AC5.1) f sprintf(lookup query, 'lookup %s %s %s', $ OptLN,

$ OptFN, $ OptRole)g ;

(NT5.2) OptLN ::= <last name $LN>

(AC5.2) f sprintf($ OptLN, '-ln %s', $LN) ; g
(NT5.3) OptLN ::=

(AC5.3) f $ OptLN = '' ; g
(NT5.4) OptFN ::= <first name $FN>

(AC5.4) f sprintf($ OptFN, '-fn %s', $FN) ; g
(NTAC5.5) OptFN ::= f $ OptFN = ''; g
(NT5.6) OptRole ::= <role $R>

(AC5.6) f sprintf($ OptRole, '-role %s',$R) ; g
(NTAC5.7) OptRole ::= f $( OptRole.role) = '' ; g

As discussed earlier, query Q43 is directly supported by description D5. When nonterminal OptLN

matches the <last name 'Smith'> clause in the query, its associated code is executed, storing the string '-ln
Smith' in $ OptLN. Similarly, '-role professor' is stored in $ OptRole. When the query matches template
QT5.1, variable lookup query is assigned the string 'lookup -ln Smith -role professor', which is sent
to the lookup facility.

7.3.2 Recursion

Nonterminal templates may contain nonterminals recursively. This 
exibility allows us to describe in�-
nite sets of expansions. The following description | which describes queries with an arbitrary number of
conditions on the person subobjects | illustrates recursion

(D6) /* This query description involves recursion */

(QT6.1) Query ::= *OP :- <OP person f Cond g>
(NT6.2) Cond ::= <$Label $Value> Cond

(NT6.3) Cond ::=

The query template above directly supports query Q43. To see this we �rst expand Cond with the
nonterminal template NT6.2, yielding

(E7) Query ::= *OP :- <OP person f <$Label $Value> Cond g>

Expanding Cond again we obtain:

(E8) Query ::= *OP :- <OP person f <$Label $Value> <$Label1 $Value1> Cond g>

Note that in the second expansion we replaced the placeholder names with new names $Label1 and $Value1.
This policy is essential to avoid confusion with names from other expansions. Finally, we expand Cond with
the nonterminal template NT6.3 (i.e., the \empty" template) to produce an expansion that directly matches
query Q43.
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In some cases we may want to force placeholder names obtained by expanding nonterminals to be the
same as existing placeholder names in the query template. By using parameters as arguments of QDTL
nonterminals we can force di�erent templates to refer to the same variable or placeholder.

7.3.3 Metapredicates

Descriptions D4 and description D6 accept similar queries, with the exception that D6 accepts any subobject
label. For example, D6 will accept the query

*P :- <P person {<M fuel 'gasoline'>}>

(and an action may translate it into the string 'lookup -fuel gasoline') while D4 will not.
We can force D6 to check for particular labels (and e�ectively schemas) by using metapredicates. This

capability gives us the same functionality as D4 with a more compact speci�cation. To illustrate, consider
the following modi�cation of the nonterminal template NT6.2:

(NT9.2) Cond ::= <$Label $Value> Cond personsub($Label)

The metapredicate personsub($Label) checks whether the constant that matches $Label is a valid label
for some subobject of person. The metapredicate personsub() is implemented by a C function of the same
name. The wrapper implementor provides this function together with description D9.

The converter treats metapredicates simply as additional conditions that must hold for a query to match
a template. In our example, after we expand query template QT6.1 with the nonterminal template NT9.2
and then with the nonterminal template NT6.3 we get:

*OP :- <OP person {<$Label $Value> personsub($Label)}>

Matching this expansion with query Q30 requires that we bind $Label to 'last name' and $Value to
'Smith'. This binding implies that personsub('last name') must hold. The C function personsub is
thus invoked, and if it answers \yes" the expansion matches the query.

7.4 Wrapper Architecture

Figure 7.2 shows the architecture of the wrappers generated with our toolkit. The shaded boxes represent
components provided in the toolkit; the wrapper implementor provides the driver that has the primary
control of query processing and invokes various services of the toolkit { as is shown in Figure 7.2. The
implementor also provides the QDTL description for the converter, as well as the Data EXtraction (DEX)
template for the extractor component of the toolkit.

Our wrappers behave as servers in a client-server architecture, where the clients are mediators or generic
client application programs. Clients use the client support library to issue queries and receive OEM results
(see Figure 7.2). The server support library component of the toolkit receives queries from the client and
dispatches the driver for query processing. The driver invokes the converter, which �nds a query that supports
the input query and returns the native query constituents. The latter are values assigned to variables of the
driver that are used to construct the native query. For example, variable lookup string of description D2
contains the only native query constituent for the \lookup" wrapper.

The driver then submits the native query to the underlying information source and receives the result
from the source. The driver uses the extractor to extract information from the received result and then
uses the packager to pack the result components into OEM objects. Finally, if during the query/description
matching a �lter was produced, the driver passes the OEM result and the �lter to the �lter processor.

Subsection 7.4.1 discusses the converter architecture in more detail. Then, Subsection 7.4.2 discusses the
extractor, while Subsection 7.4.3 discusses the �lter processor.
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Figure 7.2: The Architecture of the Translator

7.4.1 Converter Architecture

To illustrate, let us assume that the converter is given description D5 which directly supports query Q43
(see Section 7.3). The query/description matching component of the converter produces the parse tree of
Figure 7.3 which contains all the information about the expansions and substitutions obtained while matching
the query and the description. The parse tree is used by the action execution component of the converter
to execute the actions that generate the native query constituents. Note, the converter { unlike the Yacc
processor { performs the query/description matching and the action execution in two separate phases because
there may be more than one maximal supporting query, and consequently more than one parse trees. The
converter executes actions only after it selects one of the parse trees.

The nodes of the parse tree correspond to the templates that were used for the matching. For readability,
in Figure 7.3 we have named (top left corner) the nodes of the tree using the labels of the corresponding
templates in description D5. Also, every node contains a pointer to a C function, such as ac52(), ac55(),
etc, containing the code for the corresponding action. The root node of the parse tree corresponds to query
template QT5.1 that matched with the query and points to nodes corresponding to the nonterminal templates
{ NT5.2, NTAC5.5, and NT5.6 { that were used. Every node contains a list of the constant placeholders
that appear in the template, along with the matching constants.

If there are multiple maximal supporting queries, the query/description matching component passes
all the corresponding parse trees to the cost estimator which chooses one of the parse trees either by an
arbitrary choice or by cost-based selection. The latter technique assumes that the wrapper has access to
cost estimates of the functions provided by the underlying sources, catalog estimates, and so on. In our
current implementation, our cost estimator does not perform cost optimization and selects the �rst parse
tree. However, we believe it is important to have the cost optimizer framework in place initially so that
optimization may be added later. Once a parse tree is selected, the action executor does a postorder
traversal of the parse tree and invokes the corresponding action functions. The actions have access to the
list of [constant placeholder, matching constant] pairs.
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7.4.2 Information Extraction

Often, legacy systems return data as semi-structured strings. In these cases, the Data Extractor (DEX)
can be used to parse the result and identify the required data. DEX is con�gured with a description of
the source's output and information regarding which parts should be extracted. We use a brief example to
illustrate how DEX works. Suppose that our sample \lookup" facility returns results as a sequence of text
lines, of the form:

Record 1

Last Name: Smith

First Name: John

Role: Student

Record 2

Last Name: ...

The goal of the extractor is to extract the last-name, first-name, and role �elds of the \lookup"
result. This is achieved by giving the following DEX template to the extractor.

MATCH STRING (lookup_result)

{ records_number = 0 ;}

( Record # \n

Last Name\:\ $$(lookup_array[records_number].last_name) \n

First Name\:\ $$(lookup_array[records_number].first_name) \n

Role\:\ $$(lookup_array[records_number].role) \n

{ records_number++ ; }

)*

Note, inside the $$(...) structures appear the names of C variables of the driver. For our running
example we may assume that the following data structure has been declared in the driver:

struct lookup type f char[40] last name ;

char[20] first name ;

char[30] role ; g lookuparray[200] ;

The above pattern speci�es the expected syntax of the string lookup result (which contains the result
of lookup), speci�es which parts of the output string will be extracted, and in which variables of the driver
they will be placed. Our extractor can be viewed as a modi�cation of the Yacc and Lex tools for the more
speci�c problem of information extraction.
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7.4.3 Result Creation and Filter Processing

After the extractor gathers the information in the appropriate data structures of the driver, and the pack-
ager constructs the OEM result objects, the �lter processor applies the �lter on the OEM result objects.
The �lter is produced by the converter while matching the input MSL query with the QDTL description.
The �lter is an MSL query and is applied to the output of the packager in a 2-step process by the �lter
processor: First the �lter processor creates an algebraic description of the MSL query and then it executes
the algebraic description. The algebraic operations can \�nd the subobjects of an object," \compare the
object-id/label/value of an object to a constant," and so on.

7.5 The Query Translation Algorithm

Answering whether a MSL query q is supported by a QDTL description d is a hard problem. Often we need
to reason with descriptions that support in�nitely many queries (for instance, description D6). Fortunately,
the problem can be reduced to a well-studied problem in deductive database systems. In this section, we
discuss how to reduce the \support" problem for QDTL descriptions and MSL queries to a relational context,
and we extend existing results from deductive database theory to solve the support problem.

Our solution is based on the OEM-to-relational reduction that was presented in Section 4.4.1. In partic-
ular, the MSL queries and QDTL descriptions are actually converted to relational terms using the relations
top, object, and member. Of course, the objects in the underlying sources are not converted. We recall in the
following section the basic rules of reducing OEM to relational and we enhance them for translating QDTL
descriptions to Datalog programs. Note, we drop the SRC �eld (see Section 4.4.1) because the MSL query
and the template refer to the same source always.

7.5.1 Reduction of OEM to Relational

OEM objects are represented relationally by 
attening them into tuples. Each object is represented using
tuples of three relations, namely top, object, and member. OEM objects can be converted mechanically to
the relational representation using a few straightforward rules: For an object o with object-id oid, label l,
and an atomic value v, we introduce the tuple

object(oid; l; v)

If o is a set object with object-id oid and label l, then we introduce the tuple

object(oid; l; set)

Assuming that o has subobjects oi 1 � i � n, identi�ed by oidi ; 1 � i � n we introduce n tuples

member(oid; oidi)

where 1 � i � n. Finally, if o is a top-level object, and is identi�ed by object-id oid, we also introduce tuple

top(oid)

The relational representation of MSL queries is obtained similarly by querying the top, object, and member

relations that represent the object structure referenced in the query.

EXAMPLE 7.5.1 Consider the query

*O :- <O person f<LM last name 'Smith'>g>

The above query selects all top-level objects O, i.e., the subgoal top(O) must hold. Object O is a person

set-object, i.e. the subgoal object(O; person; set) must hold. O must have a subobject identi�ed by LM, i.e.
member(O; LM) must hold. Finally, LMmust be a last name object with atomic value 'Smith', i.e., object(LM,
last name, 'Smith') must hold. We collect all the object-id's O that satisfy the stated conditions into a
relation answer. Thus, the MSL query can be written as the following datalog query:
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answer(O) :- top(O), object(O, person, set),

member(O,LM), object(LM, last name smith)
2

The general algorithm for converting a normal-form MSL query to a relational form is given in Ap-
pendix B. A QDTL description is similarily reduced to relational description. We illustrate the translation
via an example.

EXAMPLE 7.5.2 Consider description D6 from Subsection 7.3.2. The equivalent relational representation
is:

(R10) Query ::= answer(OP) :- top(OP), object(OP, person, set), Cond(OP)

Cond(OP) ::= member(OP, OS), object(OS, $Label, $Value), Cond(OP)

Cond(OP) ::=

Note, the nonterminal Cond has been replaced by the nonterminal Cond(OP) that has one parameter. We
need this parameter because we have to denote that object OS that appears in the nonterminal template
associated with Cond is a subobject of OP. 2

7.5.2 Algorithm

In this section we illustrate the algorithm that for a given MSL query written relationally, �nds maximal
supporting queries from a QDTL description also written relationally. If the query is indirectly supported,
the algorithm derives the �lter MSL query that needs to be applied to the OEM objects picked by the
underlying source.

First we illustrate the process of �nding a supporting query given the description D and the query Q.
Then we show how description D can be expressed as a (possibly recursive) Datalog program P (D). We
show that the problem of determining if a description D supports query Q, is the same as the problem of
determining if program P (D) contains3 (subsumes) query Q and if a corresponding �lter query exists. Thus,
a supporting query is found in two steps:

1. �nd a subsuming query, and

2. �nd the corresponding �lter.

We extend an existing algorithm [Ull89] that checks containment, to answer the �rst step. We refer to
the containment algorithm from [Ull89] as QinP. We extend the algorithm to handle the second step.

AlgorithmQinP gives a yes/no answer to the containment question and thus to the subsumption question.
Thus, we further extend the algorithm to �nd the actual maximal supporting queries and also the native
query constituents for the underlying source. We describe in detail the extended algorithm X-QinP in the
Appendix C. We continue with examples to illustrate the required extensions.

EXAMPLE 7.5.3 (Finding Supporting Queries) This example illustrates, in relational terms, how to
�nd supporting queries for a MSL query from a QDTL description. We use this example in the rest of this
subsection.

Consider the query Q45 which selects all person objects that have a subobject with label last name and
value 'Smith':

(Q45) answer(O) :- top(O), object(O, person, set), member(O,N),

object(N, last name, 'Smith')

Consider the description D11 that supports queries that select person objects that have at least one subobject
that has a speci�ed label and a speci�ed value.

3A query Q is contained in a program P if for all databases, P derives a superset of the answers derived by Q.
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(D11) (QT11.1) Query ::= answer(P) :- top(P), object(P, person, set), Cond(P)

(NT11.1) Cond(P) ::= member(P,X), object(X,$L,$V)

By expanding template QT11.1 using nonterminal expansion rule NT11.1 we obtain expansion (E46).

(E46): answer(P) :-top(P), object(P, person, set), member(P,X), object(X,$L,$V)

(E46) is identical to query Q45 by substituting appropriately variables and place holders. Thus, D11 directly
supports Q45.

Alternatively, consider query Q47 that picks person objects with speci�ed values of subobjects last name

and ssn.

(Q47) answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith'), member(O,S),

object(S, ssn, '123')

Description D11 does not directly support query Q47 because the query imposes selection conditions on two
subobjects whereas the description supports queries with only single subobject selections. However, E46
produces two queries that indirectly support Q47:

� E48 enforces the selection condition on subobject last name.

(E48): answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith')

� E49 enforces the selection condition on subobject ssn.

(E49): answer(O) :- top(O), object(O, person, set), member(O,S),

object(S, ssn, '123')

2

As illustrated above, nonterminals in a query template are expanded to yield expansions of the query
template that match the query of interest. If a nonterminal is de�ned using a recursive template, then the
query template has an in�nite number of expansions. To �nd a supporting query requires checking if query
Q matches one or more of the in�nite number of expansions.

In the next section we show how to reduce the problem of �nding a supporting query in a description to
the problem of determining whether a conjunctive query is contained in a Datalog program. We extend a
known solution to the latter problem to �nd all the supporting queries, the corresponding �lter queries, and
the corresponding native query constituents.

Expressing Descriptions as Recursive Datalog Programs

In description D11, if we replace the query template with the rule de�ning predicate answer, and replace ::=
with :- in the nonterminal template NT11.1, then we get a Datalog program that uses constant placeholders
in addition to variables and constants.4 The constant placeholders are similar to variables except that they
are used in the actions that produce the native query constituents. We use P (D) to refer to the Datalog
program corresponding to description D. The process of �nding an expansion of a query template in a
description D that matches a target query Q, is the same as determining if the Datalog program P (D)
produces a rule E that de�nes predicate answer and matches query Q. Rule E matches query Q if the head
of E maps to the head of Q, and each subgoal of E maps to some subgoal of Q (with appropriate restrictions
on how to map variables, placeholders, and constants). Query Q45 and expansion (E46) in Example 7.5.3
illustrated this case.

Note, in our framework both Q and E are conjunctive queries [Ull89] extended with placeholders. From
existing work on the containment of Datalog queries we know that the existence of a mapping from E to Q

4Templates with empty expansions are handled as explained in the appendix.
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is a necessary and su�cient condition for the containment of E in Q.5 Thus, the problem of determining if a
description D supports a conjunctive query Q is the same problem as determining if some rule produced by
Datalog program P (D) contains query Q (modulo the existence of a �lter query). Furthermore, for Datalog
this question is the same as asking if the program P (D) contains Q. Section 14.5 in [Ull89] gives an algorithm
(Algorithm QinP) to answer exactly this question.

Applicability and Extensions of Algorithm QinP

First, we illustrate how the containment algorithm QinP �nds subsuming queries given a query and a
description. Then we illustrate the extensions that need to be made to Algorithm QinP.

EXAMPLE 7.5.4 (Applying Algorithm QinP) Consider query Q47 from Example 7.5.3.

(Q47) answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith'), member(O,M),

object(M, ssn, '123')

and the description D11

answer(P) :- top(P), object(P, person, set), Cond(P)

Cond(P) :- member(P,X), object(X,$L,$V)

To determine if program P(D11) contains query Q47, Algorithm QinP does the following: First the algorithm
\freezes" Q47, i.e., it replaces each variable in each subgoal of Q47 by a corresponding \frozen" constant and
puts the resulting frozen facts in a database DB(Q47). The frozen constant for a variable is represented by
a constant of the same name in lower case and with a bar on it. The overbars distinguish frozen constants
from regular constants.

top(�o), object(�o, person, set), member(�o,�l), object(�l, last name, 'Smith'),

member(�o, �m), object(�m, ssn, '123')

Then, the program P(D11) is evaluated on DB(Q47) to check if the program derives the frozen head of Q47,
namely \answer(�o)." If yes, then it is the case that the program contains the query.

While evaluating the program on the frozen database, constant placeholders in P(D11) are assigned only
regular constants and not frozen constants, because frozen constants correspond to variables in the target
query. Variables in P(D11) are assigned either frozen or regular constants. 2

The above example illustrates that Algorithm QinP gives only a yes/no answer to the subsumption
question. That is, if program P (D) derives the frozen head of query Q then we know that D subsumes Q.
However, the algorithm does not �nd the particular subsuming query (for instance, (E48) in Example 7.5.3).
The algorithm does not �nd the selection conditions that are not enforced by each subsuming query (for
instance, (E48) does not enforce ssn = '123'). Finally, algorithm QinP does not retain enough information
to build the native query constituents. Algorithm X-QinP provides this functionality and �nds all the
maximal supporting queries (if there are multiple such queries). We illustrate these points via a set of
examples.

EXAMPLE 7.5.5 (Multiple Subsuming Queries) Example 7.5.3 shows that query Q47 is indirectly
supported by Description D11 (page 85) via two subsuming queries (E48) and (E49). We discuss in more
detail how to obtain (E48).

(E48): answer(O) :- top(O), object(O, person, set), member(O,L),

object(L, last name, 'Smith')

5The containment results hold in the presence of constant placeholders.
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(E48) is obtained by algorithm X-QinP, because program P(D11) derives the frozen head of query Q47 using
frozen base facts top(�o), object(�o,person,set), member(�o,�l), and
object(�l,last name,'Smith'). (E49) is obtained similarly. As guaranteed by extended algorithm X-QinP,
(E48) and (E49) are maximal. 2

Note, in Example 7.5.5 the subsuming queries (E48) and (E49) do not use all the frozen facts obtained
by freezing the target query Q47. Facts not used to derive a subsuming query correspond to unenforced
selection conditions and constitute the residue for that query. For instance, for subsuming query (E48) the
frozen facts member(�o,�s) and object(�s,ssn,'123') constitute the residue. A non empty residue implies
that the subsuming query does not enforce all the selection conditions of the input query. Thus, we need
to formulate a �lter MSL query that when applied to the OEM objects picked by the subsuming query,
gives the same result as the input query. A �lter query may not always exist as illustrated by the following
example.

EXAMPLE 7.5.6 (Existence of a Filter query) Consider a query Q that for all persons with last name

'Smith' picks the subobject corresponding to the first name. Consider a query template T that picks the
first name subobjects of all persons. Algorithm X-QinP infers that T generates a query Qs that subsumes
Q along with the residue member(P,LN), object(LN, last name, 'Smith'), i.e., the parent objects of the
picked first name subobjects have last name value 'Smith'. This unapplied selection condition cannot be
enforced on the result of query Qs because there is no way to infer from the result what first name is
associated with which last name. Thus, no �lter query exists for query Qs. Algorithm X-QinP discards
subsuming queries for which no �lter query may be formulated. For instance, we discard a subsuming query
if its residue refers to an object that is not a subobject of the result of the subsuming query. We also discard
queries based on other criteria described in the Appendix.

AlgorithmX-QinP generates �lter queries for subsuming queries that are retained and thus are supporting
queries. A conservative �lter query consists of all the conditions in the input query, of which some conditions
could be redundant. Our algorithm derives optimal �lter queries, that is, removes all redundant conditions.
Below we illustrate the �lter MSL query produced by the algorithm for query (E48).

*O :- <O person f<S, ssn, '123'>g>
2

The last extension to algorithm QinP handles the actions that are executed by the converter to generate
the native query constituents. The actions are associated with the nonterminal and query templates of a
description D. When we reduce a query template or nonterminal template T of a description D into a rule R
of the datalog program P (D) we associate with R the action that is associated with the template T . Then,
the problem of executing the actions associated with the templates of D reduces to the problem of executing
the actions associated with the corresponding rules of P (D). Algorithm X-QinP tracks the rules used to
derive a supporting query and subsequently executes the actions associated with these rules to produce the
native query constituents.

7.6 Related Work

Integration of heterogeneous information sources has attracted great interest from the database community[Wie92,
LMR90, T+90, Gup89, A+91, C+95, FK93]. Signi�cant work has been done on integrating and querying
data that is in the same model as the integration system. However, underlying sources may have di�erent
data models, thus requiring the existence of wrappers, and consequently, the facilitation of the wrapper
construction. [EH86] points out that typically the construction of a wrapper requires \6 month work" (sic).
Indeed, there are existing algorithms for translating schemas and queries of a data model A (say, relational)
to schemas and queries of a data model B (say, an object-oriented data model)[QR95, A+91]. Our query
translation methodology is di�erent from the above cited work in two ways:
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1. We provide a toolkit that can translate queries from our common data model to queries of any data
model, i.e. we are not bound to a speci�c \target" data model. Note, the underlying information
sources may not even have a well-de�ned data model.

2. We assume that the source may have limited query capabilities, i.e., not every query over the schema
of the underlying source can be answered.

We contribute in two ways to the problem of limited query capabilities (that has been recently recognized
[RSU95, C+95] as being very important in integration of arbitrary heterogeneous information sources): First,
we provide a concise language for description of query capabilities. Second, we automatically increase the
query capabilities of a source.

The problem of �nding a supporting query is related to the problem of determining how to answer a
query using a set of materialized views in place of some of the base relations used by the query and it is
discussed in the related work Section of the next Chapter.
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Chapter 8

A Powerful Capabilities-Based

Rewriting Algorithm

The converter presented in Chapter 7 has the ability to indirectly support a query by �nding an appropriate
�lter and a subsuming query that is supported by the source. However, it is often the case that the indirectly
supported query cannot be computed unless we combine multiple directly supported queries. The main
contribution of this chapter is the enhancement of the capabilities extension technology so that an indirectly
supported query may be computed using a set of supported queries.

In particular, this chapter presents a Capabilities-Based Rewriter (CBR), which, given a target query
and descriptions of the wrappers query capabilities, it can combine multiple supported queries in order to
compute the target query. Note, the indirect query support abilities of the algorithms of Chapter 7 are not
needed in a system that features the algorithms of this chapter. We also introduce a capabilities description
language that describes relational queries and is strictly more expressive than QDTL (modulo the data
model di�erences.) The additional expressiveness results in exact representations of the source power and
consequently in computations that take full advantage of the sources power. Note, we use the relational
model in this chapter for three reasons:

1. As was already shown in Section 7.5, the problem of indirect support in OEM is easily reduced to the
problem of indirect support in the relational model. Hence all the results of this chapter can be easily
adapted for the OEM model.

2. The increased complexity of the algorithms in this chapter necessitates that we present them using the
relational model which is the model that is actually used by the algorithms.

3. The work described in this chapter was done for IBM's Garlic system, which integrates multiple
multimedia information sources, and is based on an extension of the relational model.

8.1 The Relational Query Description Language(RQDL)

In this section, we present a language to describe the supported queries for each wrapper. The language
describes conjunctive queries in the relational model (unlike QDTL which describes MSL queries.) We inherit
from QDTL the use of nonterminals for the description of arbitrarily long queries. There are also a number
of novel issues:

� RQDL can express projection capabilities.

� RQDL can describe sets of supported queries without referring to a speci�c schema. In contrast, the
reduction of QDTL to the relational model (see Section 7.5.1) refers to a schema consisting of the
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object, member, and top relations. The fact that QDTL is built on top of a speci�c schema | though
it does not look so at �rst sight | is the reason for some of its shortcomings, e.g., the inability to
describe projection capabilities.

� RQDL nonterminals have parameters which stand for arbitrarily large sets of variables and greatly
increase the expressive power of the language. For example, RQDL can describe the capabilities of a
powerful SQL system that supports all conjunctive queries over its schema while QDTL can not [PV].

We introduce the basic language features in Section 8.1.1, followed in Sections 8.1.2 and 8.1.3 with the ex-
tensions needed to describe in�nite query sets and to support schema-independent descriptions. Section 8.1.4
introduces a normal form for queries and descriptors that increases the expressiveness of the language. The
complete syntax and semantics of the language appears in Appendix D.4.

8.1.1 Language Basics

An RQDL speci�cation contains a set of query templates, each of which is essentially a parameterized query.
Where an actual query might have a constant, the query template has a constant placeholder, allowing
it to represent many queries of the same form. In addition, we allow the values assumed by the constant
placeholders to be restricted by speci�er-provided metapredicates. A query is described by a template (loosely
speaking) if (1) each predicate in the query matches one predicate in the template, and vice versa, and (2)
any metapredicates on the placeholders of the template evaluate to true for the matching constants in the
query. The order of the predicates in query and template need not be the same, and di�erent variable names
are of course possible.

For example, let us consider a modi�cation of the \lookup" facility that was introduced in Chapter 7.
It provides information { such as name, department, o�ce address, and so on { about the employees of a
company. The \lookup" facility can either retrieve all employees, or retrieve employees whose last name
has a speci�c pre�x, or retrieve employees whose last name and �rst name have speci�c pre�xes.1 We
integrate \lookup" into our heterogeneous system by creating a wrapper, called lookup, that exports a
predicate emp(First-Name, Last-Name, Department, Office, Manager). ( The Manager �eld may be
'Y' or 'N'.) The wrapper also exports a predicate prefix(Full, Prefix) that is succesful when its second
argument is a pre�x of its �rst argument. This second argument must be a string, consisting of letters only.
We may write the following Datalog query to retrieve emp tuples for persons whose �rst name starts with
'Rak' and whose last name starts with 'Aggr':

(Q50) answer(FN,LN,D,O,M) :- emp(FN,LN,D,O,M), prefix(FN,'Rak'), prefix(LN,'Aggr')

We use Datalog [Ull88] as our query language because it is well-suited to handling SPJ queries and
facilitates the discussion of our algorithms.2 We use the following Datalog terms: Distinguished variables
are the variables that appear in the target query head. A join variable is any variable that appears twice or
more in the target query tail. In the query (Q50) the distinguished variables are FN, LN, D, O and M and the
join variables are FN and LN.

Description (D51) is an RQDL speci�cation of lookup's query capabilities. The identi�ers starting
with $ ($FP and $LP) are constant placeholders | identical to QDTL's placeholders. isalpha() is a
metapredicate that returns true if its argument is a string that contains letters only. Metapredicates start
with an underscore and a lowercase letter. Intuitively, template (QT51.3) describes query (Q50) because the
predicates of the query match those of the template (despite di�erences in order and in variable names), and
the metapredicates evaluate to true when $FP is mapped to 'Rak' and $LP to 'Aggr'.

(D51) (QT51.1) answer(F,L,D,O,M) :- emp(F,L,D,O,M)

(QT51.2) answer(F,L,D,O,M) :- emp(F,L,D,O,M), prefix(L, $LP), isalpha($LP)

1The di�erence from the \lookup" as described in Chapter 7 is that now we also consider pre�x searches.
2We could have used SPJ SQL queries instead of Datalog. Then, we would use a description language that looks like SQL

and not Datalog. The same notions, i.e., placeholders, nonterminals, and so on, hold. The CBR algorithm is also the same.
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(QT51.3) answer(F,L,D,O,M) :- emp(F,L,D,O,M), prefix(L, $LP), prefix(F,$FP),

isalpha($LP), isalpha($FP)

In general, a template describes any query that can be produced by the following steps:

1. Map each placeholder to a constant, e.g., map $LP to 'Aggr'.

2. Map each template variable to a query variable, e.g., map F to FN.

3. Evaluate the metapredicates and discard any template that contains at least one metapredicate that
evaluates to false.

4. Optionally reorder the template's subgoals.

8.1.2 Descriptions of Large and In�nite Sets of Supported Queries

RQDL can describe arbitrarily large sets of templates (and hence queries) when extended with nonterminals
similar to context-free grammars. Nonterminals are represented by identi�ers that start with an underscore
( ) and a capital letter. They have zero or more parameters and they are associated with nonterminal
templates. A query template t containing nonterminals describes a query q if there is an expansion of t that
describes q. An expansion of t is obtained by replacing each nonterminal N of t with one of the nonterminal
templates that de�ne N until there is no nonterminal in t.

For example, assume that lookup allows us to pose one or more substring conditions on one or more
�elds of emp. For example, we may pose query (Q52), which retrieves the data for employees whose o�ce
contains the strings 'alma' and 'B'.

(Q52) answer(F,L,D,O,M) :- emp(F,L,D,O,M), substring(O,'alma'), substring(O,'B')

(D53) uses the nonterminal Cond to describe the supported queries. In this description the query template
(QT53.1) is supported by nonterminal templates such as (NT53.1).

(D53) (QT53.1) answer(F,L,D,O,M) :- emp(F,L,D,O,M), Cond(F,L,D,O,M)

(NT53.1) Cond(First,L,D,O,M) : substring(First, $FS), Cond(First,L,D,O,M)

(NT53.2) Cond(F,Last,D,O,M) : substring(Last, $LS), Cond(F,Last,D,O,M)

(NT53.3) Cond(F,L,Dept,O,M) : substring(Dept, $DS), Cond(F,L,Dept,O,M)

(NT53.4) Cond(F,L,D,Office,M) : substring(Office, $OS), Cond(F,L,D,Office,M)

(NT53.5) Cond(F,L,D,O,Mgr) : substring(Mgr, $MS), Cond(F,L,D,O,Mgr)

(NT53.6) Cond(F,L,D,O,M) :

To see that description (D53) describes query (Q52), we expand Cond(F,L,D,O,M) in (QT53.1) with the
nonterminal template (NT53.4) and then again expand Cond with the same template. The variable Office
of (NT53.4) uni�es with O during the expansion. The Cond subgoal in the resulting expansion is expanded
by the empty template (NT53.6) to obtain the expansion (E54).

(E54) answer(F,L,D,O,M) :- emp(F,L,D,O,M), substring(O,$OS),

substring(O,$OS1)

Note, before a template is used for expansion, all its variables are uniquely renamed. Hence, the second
occurrence of placeholder $OS of template (NT53.4) is renamed to $OS1 in the above expansion. The above
expression describes the query (Q52), i.e., the placeholders and variables of (E54) can be mapped to the
constants and variables of (Q52).

93



8.1.3 Schema Independent Descriptions of Supported Queries

Description (D53) assumes that a �xed schema is exported by the wrapper. However, the query capabilities
of many sources (and thus wrappers) are independent of the schemas of the data that reside in them. For
example, a relational database allows SPJ queries on all its relations. To support schema independent
descriptions RQDL allows the use of placeholders in place of the relation name. Furthermore, to allow tables
of arbitrary arity and column names, RQDL provides special variables called vector variables, or simply
vectors, that match with lists of variables that appear in a query. For example, if we match the template

answer( R) :- r( A)

with the the query

answer(X,Y,Z) :- r(X,Y,Z,W)

the vector R matches with the variable list [X,Y,Z] and A matches with [X,Y,Z,W]. We represent vectors
in our examples by identi�ers starting with an underscore ( ) followed by a capital letter.3 In addition, we
provide two built-in metapredicates to relate vectors and attributes: subset and in. The metapredicate
subset( R, A) succeeds if each variable in the list that matches with R appears in the list that matches
with A. The metapredicate in(X, A) succeeds if the variable that matches with X appears in the variable
list that matches with A.

For example, consider a wrapper called file-wrap that accesses plain UNIX �les and translates them
into tables. It may output any subset of any table's �elds and may impose one or more substring conditions
on any �eld. Such a wrapper may be easily implemented using the UNIX utility AWK. (D55) uses vectors
and the built-in metapredicates to describe the queries supported by file-wrap. Note, for readability we
will use italics for vectors and bold for metapredicates.

(D55) (QT55.1) answer( R) :- $Table( A), Cond( A), subset( R, A)
(NT55.1) Cond( A) : in(X, A), substring(X, $S), Cond( A)
(NT55.2) Cond( A) :

In general, �nding whether a query is described by a template containing vectors requires expanding
nonterminals (as described above), mapping variables, placeholders, and vectors (see below), and �nally,
evaluating metapredicates. To illustrate this, let us follow the steps that prove that query (Q56) is described
by (D55).

(Q56) answer(L,D) :- emp(F,L,D,O,M), substring(O,'alma'), substring(O,'B')

First, we expand (QT55.1) by replacing the nonterminal Cond with (NT55.1). Then again we expand the
result with (NT55.1), and �nally with (NT55.2), thus obtaining expansion (E57).

(E57) answer( R) :- $Table( A), in(X, A), substring(X,$S),

in(X1, A), substring(X1,$S1), subset( R, A)

Expansion (E57) describes query (Q56) because there is mapping of variables, vectors, and placeholders of
(E57) that makes the metapredicates succeed and makes every predicate of the expansion identical to a
predicate of the query. Namely, map vector A to [F,L,D,O,M], vector R to [L,D], $S to 'alma', $S1
to 'B', and the variables X and X1 to O. We must be careful with vector mappings; if the vector V that
maps to [X1; : : : ; Xn] appears in a metapredicate, we replace V with [X1; : : : ; Xn]. However, if the vector
V appears in a predicate as p( V ) the mapping results in p(X1; : : : ; Xn). Finally, the metapredicate in(O,
[F,L,D,O,M]) succeeds because O is in the variable list, and subset([L,D], [F,L,D,O,M]) succeeds be-
cause [L,D] is a \subset" of [F,L,D,O,M].

3Nonterminals also start with an underscore and a capital letter. Vectors are distinguished from nonterminals by their
position in the template.
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Vectors are useful even when the schema is known as the speci�cation may be repetitious, as in description
(D53). In our running example, even if the attributes of the tables are known, we save e�ort by not having
to mention explicitly the columns and the table names when saying that a substring condition can be placed
on any column of any tuple. Furthermore, we do not have to update the speci�cation whenever the schema
changes.

8.1.4 Query and Description Normal Form

If we allow the templates' variables and vectors to map to arbitrary lists of constants and variables, descrip-
tions may appear to support queries that the underlying wrapper does not support because using the same
variable name in di�erent places in the query or description can cause an implicit join or selection that does
not explicitly appear in the description. For example, consider query (Q58) that retrieves employees where
the manager �eld is 'Y' and the �rst and last names are equal, as denoted by the double appearance of FL
in emp.

(Q58) answer(FL,D) :- emp(FL,FL,D,O,'Y')

(Q58) should not be described by the description (D55). Nevertheless, we are still able to construct the
expansion (E59) that erroneously matches with the query (Q58) if we map A to [FL,FL,D,O,'Y'] and R
to [FL,D].

(E59) answer( R) :- $Table( A), subset( R, A)

This section introduces a query and description normal form that avoids inadvertently describing joins and
selections that were not intended. In the normal form both queries and descriptions have only explicit
equalities. A query is normalized by replacing every constant c with a unique variable V and then by
introducing the subgoal V = c. Furthermore, for every join variable V that appears n > 1 times in the
query we replace its instances with the unique variables V1; : : : ; Vn and then we introduce the subgoals
Vi = Vj ; i = 1; : : : ; n; j = 1 : : : ; i�1. We replace any appearance of V in the head with V1. E.g., query (Q60)
is the normal form of (Q58).

(Q60) answer(FL1,D) :- employee(FL1,FL2,D,O,M), FL1=FL2, M='Y'

Description (D55) does not describe (Q60) because (D55) does not support the equality conditions that
appear in (Q60). Description (D61) supports equality conditions on any column and equalities between any
two columns: (NT61.2) describes equalities with constants and (NT61.3) describes equalities between the
columns of our table.

(D61) (QT61.1) answer( R) :- $Table( A), Cond( A), subset( R, A)
(NT61.1) Cond( A) : in($Position,X, A), substring(X, $S), Cond( A)
(NT61.2) Cond( A) : in($Position1,X, A), X=$C, Cond( A)
(NT61.3) Cond( A) : in($Pos1,X, A), in($Pos2,Y, A), X=Y, Cond( A)
(NT61.4) Cond( A) :

For presentation purposes we use the more compact unnormalized forms of queries and descriptions when
there is no danger of introducing inadvertent selections and joins. However, the algorithms use the normal
form.

8.2 The Capabilities-Based Rewriter

The Capabilities-Based Rewriter (CBR) determines whether a target query q is directly supported by the
wrapper description. If not, the CBR determines whether q can be computed by combining a set of supported
queries using selections, projections and joins. In this case, the CBR will produce a set of plans for evaluating
the query. Note, CBR is more powerful than the query converter of TSIMMIS (described in Chapter 7)
because it can indirectly support a query using a combination of multiple supported queries.4

4Indeed, all the examples presented in this section cannot be handled by the query converter of Chapter 7.
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Figure 8.1: The CBR's components

The CBR consists of three modules, which are invoked serially (see Figure 8.1):

� Component SubQuery (CSQ) Discovery: �nds supported queries that involve one or more sub-
goals of q and export one or more of the variables that appear in the subgoals. The CSQs that are
returned contain the largest possible number of selections and joins, and do no projection. In this way
the CBR pushes as much work as possible to the sources and exploits their functionality. All other
CSQs are pruned. This prevents an exponential explosion in the number of CSQs.

� plan construction: produces one or more plans that compute q by combining the CSQs exported by
CSQ Discovery. The plan construction algorithm is based on query subsumption and has been tuned
to perform e�ciently in the cases typically arising in capabilities-based rewriting.

� plan re�nement: re�nes the plans constructed by the previous phase by pushing as many projections
as possible to the wrapper.

EXAMPLE 8.2.1 Consider query (Q62), which retrieves the names of all managers that manage depart-
ments that have employees with o�ces in the 'B' wing, and the employees' o�ce numbers. This query is
not directly supported by the wrapper described in (D61). Recall that for presentation purposes we use the
more compact unnormalized forms of queries and descriptions.

(Q62) answer(F0,L0,O1) :- emp(F0,L0,D,O0,'Y'), emp(F1,L1,D,O1,M1), substring(O1,'B')

The CSQ detection module identi�es and outputs the following CSQs:

(Q63) answer63(F0,L0,D,O0) :- emp(F0,L0,D,O0,'Y')

(Q64) answer64(F1,L1,D,O1,M1) :- emp(F1,L1,D,O1,M1), substring(O1, 'B')

Note, the CSQ discovery module does not output the 24 CSQs that have the tail of (Q63) but export a
di�erent subset of the variables F0, L0, D, and O0 (likewise for (Q64). The CSQs that export fewer variables
are pruned hence reducing signi�cantly the run time of the algorithm.

The plan construction module detects that a join on D of answer63 and answer64 produces the required
answer of (Q62). Consequently, it derives the plan (P65).

(P65) answer(F0,L0,O1) :- answer63(F0,L0,D,O0), answer64(F1,L1,D,O1,M1)

Finally, the plan re�nement module detects that variables O0, F1, L1, and M1 in answer63 and answer64 are
unnecessary. Consequently, it generates the more e�cient plan (P68).
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(Q66) answer66(F0,L0,D) :- emp(F0,L0,D,O0,'Y')

(Q67) answer67(D,O1) :- emp(F1,L1,D,O1,M1), substring(O1, 'B')

(P68) answer(F0,L0,O1) :- answer66(F0,L0,D), answer67(D,O1)

2

The CBR's goal is to produce all algebraically optimal plans for evaluating the query. An algebraically
optimal plan is one in which any selection, projection or join that can be done in the wrapper is done there,
and in which there are no unnecessary queries. Note, algebraic optimality generalizes the notion of maximal
supporting queries (see Section 7.2.1) for the case that we combine multiple supported queries. The formal
de�nition of algebraic optimality is the following:

De�nition 8.2.1 (Algebraically Optimal Plan P ) A plan P is algebraically optimal if there is no other
plan P 0 such that for every CSQ s of P there is a corresponding CSQ s0 of P 0 such that the set of subgoals
of s0 is a superset of the set of subgoals of s (i.e., s0 has more selections and joins than s) and the set of
exported variables of s is a superset of the set of exported variables of s0 (i.e., s0 has more projections than
s.) 2

In the next three sections we describe each of the modules of the CBR in turn.

8.3 CSQ Discovery

The CSQ discovery module takes as input a target query and a description. It has many similarities to
the QDTL converter: it is essentially a rule production system where the templates of the description are
the production rules and the subgoals of the target query are the base facts. The CSQ discovery module
uses bottom-up evaluation because it is guaranteed to terminate even for recursive descriptions [Ull89].
However, bottom-up derivation often derives unnecessary facts, unlike top-down. We use a variant of magic
sets rewriting [Ull89] to \focus" the bottom-up derivation. Furthermore, the vectors greatly increase the
complexity of the algorithm as well as the size of its output, i.e., the set of derived CSQs. To further reduce
the set of derived CSQs we develop two CSQ pruning techniques as decsribed in Sections 8.3.2 and 8.3.3.
Reducing the number of derived CSQs makes the CSQ discovery more e�cient and also reduces the size of
the input to the plan construction module.

The query templates derive answer facts that correspond to CSQs. In particular, a derived answer fact
is the head of a produced CSQ whereas the underlying base facts, i.e., the facts that were used for deriving
answer, are the subgoals of the CSQ. Nonterminal templates derive intermediate facts that may be used by
other query or nonterminal templates. We keep track of the sets of facts underlying derived facts for pruning
CSQs. The following example illustrates the bottom-up derivation of CSQs and the gains that we realize
from the use of the magic-sets rewriting. The next subsection discusses issues pertaining to the derivation
of facts containing vectors.

EXAMPLE 8.3.1 Consider query (Q52) and description (D53) frompage 92. The subgoals emp(F,L,D,O,M),
substring(O, 'alma'), and substring(O,'B') are treated by the CSQ discovery module as base facts.
To distinguish the variables in target query subgoals from the templates' variables we \freeze" the query
variables, e.g. F,L,D,O,M, into similarly named constants, e.g. f,l,d,o,m. Actual constants like 'B' are in
single quotes.

In the �rst round of derivations template (NT53.6) derives fact Cond(F,L,D,O,M) without using any
base fact (since the template has an empty body). Hence, the set of facts underlying the derived fact is
empty. Variables are allowed in derived facts for nonterminals. The semantics is that the derived fact holds
for any assignment of frozen constants to variables of the derived fact.

In the second round many templates can �re. For example, (NT53.4) derives the fact Cond(F,L,D,

o,M) using Cond(F,L,D,O,M) and substring(o,'alma'), or using Cond(F,L,D,o,M) and
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substring(o, 'B'). Thus, we generate two facts that, though identical, they have di�erent underlying sets
and hence we must retain both since they may generate di�erent CSQs. In the second round we may also
�re (NT53.6) again and produce Cond(F,L,D,O,M) but we do not retain it since its set of underlying facts
is equal to the version of Cond(F,L,D,O,M) that we have already produced.

Eventually, we generate answer(f,l,d,o,m)with set of underlying facts femp(f,l,d,o,m), substring(o,

'alma'), substring(o,'B')g. Hence we output the CSQ (Q52), which, incidentally, is the target query.
The above process can produce an exponential number of facts. For example, we could have proved

Cond(o,L,D,O,M), Cond(F,o,D,O,M), Cond(o,o,D,O,M), and so on. In general, assuming that emp has
n columns and we apply m substrings on it we may derive nm facts. Magic-sets can remove this source
of exponentiality by \focusing" the nonterminals. Applying magic-sets rewriting and the simpli�cations
described in Chapter 13.4 of [Ull89] we obtain the following equivalent description. We show only the
rewriting of templates (NT53.4) and (NT53.6). The others are rewritten similarly.

(D69) (QT69.1) answer(F,L,D,O,M) :- emp(F,L,D,O,M), Cond(F,L,D,O,M)

(NT69.4) Cond(F,L,D,Office,M):mg Cond(F,L,D,Office,M),substring(Office,$OS),

Cond(F,L,D,Office,M)

(NT69.6) Cond(F,L,D,O,M) : mg Cond(F,L,D,O,M)

(MS69.1) mg Cond(F,L,D,O,M) : emp(F,L,D,O,M)

Now, only Cond(f,l,d,o,m) facts (with di�erent underlying sets) are produced. Note, the magic-sets
rewritten program uses the available information in a way similar to a top-down strategy and thus derives
only relevant facts. 2

8.3.1 Derivations Involving Vectors

When the head of a nonterminal template contains a vector variable it may be possible that a derivation
using this nonterminal may not be able either to bind the vector to a speci�c list of frozen variables or to
allow the variable as is in the derived fact. The CSQ discovery module cannot handle this situation. For
most descriptions, magic-sets rewriting solves the problem. We demonstrate how and we formally de�ne the
set of non-problematic descriptions.

For example, let us �re template (NT55.1) of (D55) on the base facts produced by query (Q52). Assume
also that (NT55.2) already derived Cond( A). Then we derive that Cond( A) holds, with set of underlying
facts fsubstring(o, 'alma')g, provided that the constraint \ A contains o" holds. The constraint should
follow the fact until A binds to some list of frozen variables. We avoid the mess of constraints using the
following magic-sets rewriting of (D55).

(D70) (QT70.1) answer( R) :- $Table( A), Cond( A), subset( R, A)
(NT70.1) Cond( A):mg Cond( A), in($Position,X, A),substring(X,$S), Cond( A)
(NT70.2) Cond( A) : mg Cond( A)
(MS70.1) mg Cond( A) : $Table( A)

When rules (NT70.1) and (NT70.2) �re, the �rst subgoal instantiates variable A to [f,l,d,o,m] and
they derive only Cond([f,l,d,o,m]). Thus, magic-sets caused A to be bound to the only vector of interest,
namely [f,l,d,o,m]. Note a program that derives facts with unbound vectors may not be problematic
because no metapredicate may use the unbound vector variable. However we take a conservative approach
and consider only those programs that produce facts with only bound vector variables. Magic-sets rewriting
does not always ensure that derived facts have bound vectors. In the rest of this section we describe su�cient
conditions for guaranteeing the derivation of facts with bound vectors only. First we provide a condition
(Theorem 8.3.1) that guarantees that a program (that may be the result of magic rewriting) does not derive
facts with unbound vectors. Then we describe a class of programs that after being magic rewriteen satisfy
the condition of Theorem 8.3.1.
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Theorem 8.3.1 A program will always produce facts with bound vector variables if in all rules \ H( V ) :
�tail" tail has a non-metapredicate subgoal that refers to V , or in general V can be assigned a binding
if all non-metapredicate subgoals in tail are bound. 2

Intuitively, after we magic-rewrite a program it will keep deriving facts with unbound vectors only if a
nonterminal of the initial program derives uninstantianted vectors and in the rules that are used it does
not share variables with predicates or nonterminals s that bind their arguments (otherwise, the magic
predicate will force the the rules that produce uninstantianted vectors to focus on bindings of s.) For
example, speci�cation (MS55) does not derive uninstantianted vectors because the nonterminal Cond, that
may derive uninstantianted variables, shares variables with $Table( A). The following rules formalize the
above intuition. Their complexity is due to the fact that a nonterminal may bind the arguments of another
nonterminal that initially was not bound.

De�nition 8.3.1 (Grounded Subgoal in a Rule R) A subgoal that uses a predicate from the target
query, is grounded because target query subgoals instantiate their arguments using frozen constants. A
nonterminal subgoal is grounded as de�ned by De�nition 8.3.3. A metapredicate subgoal s is grounded if s
can be evaluated using the bindings of those arguments that appear in grounded subgoals of R. 2

De�nition 8.3.2 (Grounded Rule) A rule is grounded if every vector variable in the rule appears in some
grounded subgoal. The rule is said to depend on the predicates of the grounded subgoals. 2

De�nition 8.3.3 (Grounded nonterminal) A nonterminal N is grounded if each rule de�ning N is
grounded.5 For its grounding N depends on a nonterminal M if some rule de�ning N depends on M. 2

Grounded rules derive instantiated facts and only instantiated facts are derived for grounded nonterminals.
We consider only those descriptions where all nonterminals are grounded. For such descriptions magic-sets
rewriting always produces production rules that can be evaluated bottom-up without deriving facts with
vector variables.

Theorem 8.3.2 If each nonterminal in a description D is grounded then a bottom-up evaluation of magic-
sets rewritten D produces no fact that has vector variables. 2

The following algorithm derives CSQs given a target query and a description that has all nonterminals
ground.

Algorithm 1
Input: Target query Q and Description D
Output: A set of CSQs si; i = 1; : : : ; n
Method:

Check if every nonterminal in D grounded (see de�nition 8.3.3)
Reorder each template R in D such that

All predicate subgoals occur in the front of the rule
A nonterminal N appears after M if N depends on M for grounding.
Metapredicates appear at the end of the rule

Rewrite D using Magic-sets
Evaluate bottom-up the rewritten description D as described in Appendix D.3

Template R can be reordered because of the following theorem.

Theorem 8.3.3 Nonterminals of a program can be completely ordered such that nonterminal N in position
i depends for its groundings only on nonterminal in positions 1 : : : i� 1. 2

5We could relax this assumption by assuming that there is at least one grounded rule de�ning N. However, this makes the
other rules useless and meaningless.
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8.3.2 Retaining Only \Representative" CSQs

A large number of unneeded CSQs are generated by templates that use vectors and the subset metapred-
icate. For example, template (QT61.1) describes for a particular A all CSQs that have in their head any
subset of variables in A. It is not necessary to generate all possible CSQs. Instead, for all CSQs that are
derived from the same expansion e, of some template t, where e has the form

answer( V ) :- hlist of predicates and metapredicatesi, subset( V , W)

and V does not appear in the hlist of predicates and metapredicatesi we generate only the representative
CSQ that is derived by mapping V to the same variable list as W .6 All represented CSQs, i.e., CSQs
that are derived from e by mapping V to a proper subset of W are not generated. For example, the
representative CSQ (Q64) and the represented CSQ (Q67) both are derived from the expansion (E71) of
template (QT61.1).

(E71) answer( R):-$Table( A), in($Position,X, A),substring(X,'B'), subset( R, A)

The CSQ discovery module generates only (Q64) and not (Q67) because (Q64) has fewer attributes than
(Q67) and is derived by by mapping the vector R to the same vector with A, i.e., to [F1,L1,D,O1,M1].
Representative CSQs often retain unneeded attributes and consequently Representative plans, i.e., plans
containing representative CSQs, retrieve unneeded attributes. The unneeded attributes are projected out by
the plan re�nement module.

Theorem 8.3.4 Retaining only representative CSQs does not lose any plan, i.e., if there is an algebraically
optimal plan ps that involves a represented query s then ps will be discovered by the CBR. 2

The intuitive proof of this claim is that for every plan ps there is a corresponding representative plan
pr derived by replacing all CSQs of ps with their representatives. Then, given that the plan re�nement
component considers all plans represented by a representative plan, we can be sure that the CBR algorithm
does not lose any plan.

Retaining only a representative CSQ of head arity a eliminates 2a�1 represented CSQs thus eliminating
an exponential factor from the execution time and from the size of the output of the CSQ discovery module.
Still, one might ask why the CSQ discovery phase does not remove the variables that can be projected
out. The reason is that the \projection" step is better done after plans are formed because at that time
information is available about the other CSQs in the plan and the way they interact (see Section 8.5).
Thus, though postponing projection pushes part of the complexity to a later stage, it eliminates some
complexity altogether. The eliminated complexity corresponds to those represented CSQs that in the end
do not participate in any plan because they retain too few variables.

8.3.3 Pruning Non-Maximal CSQs

Further e�ciency can be gained by eliminating any CSQ Q that has fewer subgoals than some other CSQ
Q0 because Q checks fewer conditions than Q0. A CSQ is maximal if there is no CSQ with more subgoals
and the same set of exported variables, modulo variable renaming. We formalize maximality in terms of
subsumption [Ull89].

De�nition 8.3.4 (Maximal CSQs) A CSQ sm is a maximal CSQ if there is no other CSQ s that is
subsumed by sm. 2

6In general, the hlist of predicates and metapredicates i may contain metapredicates of the form in(hpositioni,hvariableii,
V ),i = 1; : : : ;m. In this case, the template describes all CSQs that output a subset of W and a superset of S =
fhvariablei1; : : : ; hvariableimg. The CSQ discovery module outputs, as usual, the representative CSQ and annotates it with
the set S that provides the \minimum" set of variables that represented CSQs must export. We will not describe any further
the extensions needed for the handling of this case.
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Note, there are two subtle di�erences between the de�nition 7.2.5 in Section 7.2.1 and the above de�nition
of maximality:

� De�nition 7.2.5 requires that the maximal query subsumes the client query.

� Even more, De�nition 7.2.5 requires that there is a �lter that can be applied on the maximal query
and produce the client query.

In general, the CSQ discovery module generates only maximal CSQs and prunes all others. This pruning
technique is particularly e�ective when the CSQs contain a large number of conditions. For example, assume
that g conditions are applied to the variables of a predicate. Consequently, there are 2g � 1 CSQs where
each one of them contains a di�erent proper subset of the conditions. By keeping \maximal CSQs only" we
eliminate an exponential factor of 2g from the output size of the CSQ discovery module.

Theorem 8.3.5 Pruning non-maximal CSQs does not lose any algebraically optimal plan. 2

The reason is that for every plan ps involving a non-maximal CSQ s there is also a plan pm that involves
the corresponding maximal CSQ sm such that pm pushes more selections and/or joins to the wrapper than
ps, since sm by de�nition involves more selections and/or joins than s.

8.4 Plan Construction

In this section we present the plan construction module (see Figure 8.1.) In order to generate a (repre-
sentative) plan we have to select a subset S of the CSQs that provides all the information needed by the
target query, i.e., (i) the CSQs in S check all the subgoals of the target query, (ii) the results in S can be
joined correctly, and (iii) each CSQ in S receives the constants necessary for its evaluation. Section 8.4.1
addresses (i) with the notion of \subgoal consumption." Section 8.4.2 checkes (ii), i.e., checks join variables.
Section 8.4.3 checks (iii) by ensuring bindings are available. Finally, Section 8.4.4 summarizes the conditions
required for constructing a plan and provides an e�cient plan construction algorithm.

8.4.1 Set of Consumed Subgoals

We associate witheach CSQ a set of consumed subgoals that describes the CSQs contribution to a plan.
Loosely speaking, a CSQconsumes a subgoal if it extracts all the required information from that subgoal.
Our goal is to �nd a combination of CSQs that consume all subgoals of the target query. This task is not
so simple because a CSQ does not necessarily consume all its subgoals. For example, consider a CSQ se
that semijoins the emp relation with the dept relation to output each emp tuple that is in some department
in relation dept. Even though this CSQ has a subgoal that refers to the dept relation it may not always
consume the dept subgoal. In particular, consider a target query Q that requires the names of all employees
and the location of their departments. CSQ se does not output the location attribute of table dept and thus
does not consume the dept subgoal with respect to query Q. Before we proceed to a formal de�nition of the
set of consumed subgoals associated with a CSQ we provide an example that illustrates the conditions that
must be met in order to include a subgoal in the consumed set of a CSQ.

EXAMPLE 8.4.1 Consider a wrapper, called semijoin, that supports queries that may include any set
of predicates, with arbitrary join conditions between them (unlike the wrapper used in Example 65,) but
can export data from only one of the predicates. This is the case in some object-oriented databases, such as
ObjectStore, which export information about one class only, though the query may involve more than one
class. Assuming that semijoin exports predicates emp and substring we can see that semijoin supports
the CSQs (Q72) and (Q73), which allow us to compute (Q62) using plan (P74).7 ((Q72) and (Q73) are
representative CSQs.)

7semijoin does not directly support the query (Q62) because (Q62) exports variables from both its emp subgoals.
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(Q72) answer72(F0,L0,D,O0) :- emp(F0,L0,D,O0,'Y'), emp(F1,L1,D,O1,M1),

substring(O1,'B')

(Q73) answer73(F1,L1,D,O1,M1) :- emp(F0,L0,D,O0,'Y'), emp(F1,L1,D,O1,M1),

substring(O1,'B')

(P74) answer(F0,L0,O1) :- answer72(F0,L0,D,O0), answer73(F1,L1,D,O1,M1)

In the above example (Q72) consumes only the subgoal emp(F0,L0,D,O0,'Y') while (Q73) consumes
the subgoals emp(F1,L1,D,O1,M1) and substring(O1,'B'). Intuitively, (Q72) consumes the emp subgoal
because it exports the distinguished variables F0 and L0 that appear in its consumed subgoal and also exports
the join variable D that connects the consumed subgoal to the non-consumed subgoals. Thus, it provides all
the information needed from the consumed subgoal. 2

We formalize the above intuition by the following de�nition:

De�nition 8.4.1 (Set of Consumed Subgoals for a CSQ) A set Ss of subgoals of a CSQ s constitutes
a set of consumed subgoals of s if and only if

1. s exports every distinguished variable of the target query that appears in Ss, and

2. s exports every join variable that appears in Ss and also appears in a subgoal of the target query that
is not in Ss.

2

Theorem 8.4.1 Each CSQ has a unique maximal set of consumed subgoals that is a superset of every other
set of consumed subgoals. 2

The proof of the uniqueness of the maximal consumed set appears in [PGH]. Intuitively the maximal set
describes the \largest" contribution that a CSQ may have in a plan. The following algorithm states how to
compute the set of maximal consumed subgoals of a CSQ. We annotate every CSQ s with its set of maximal
consumed subgoals, Cs.

Algorithm 2
Input: A target query Q and a CSQ s for Q
Output: CSQ s with computed annotation Cs
Method:

Insert in Cs all subgoals of s
Remove from Cs subgoals that have a distinguished attribute of Q not exported by s
Repeat until size of Cs is unchanged

Remove from Cs subgoals that: % remove subgoals that are not in Cs
Join on variable V with subgoal g of Q where g is not in Cs, and
Join variable V is not exported by s

Discard CSQ s if Cs is empty.

This algorithm is polynomial in the number of the subgoals and variables of the CSQ. Also, the algorithm
discards all CSQs that are not relevant to the target query:

De�nition 8.4.2 (Relevant CSQ) A CSQ s is called relevant if Cs is non empty. 2

Intuitively, irrelevant CSQs are pruned out because in most cases they do not contribute to a plan, since
they do not consume any subgoal. Note, we decide the relevance of a CSQ \locally," i.e., without considering
other CSQs that it may have to join with. By pruning non relevant CSQs we can build an e�cient plan
construction algorithm that in most cases (Section 8.4.2) produces each plan in time polynomial in the
number of CSQs produced by the CSQ discovery module. However, there are scenarios (see the extended
version [PGH]) where the relevance criteria may erroneously prune out a CSQ that could be part of a plan.
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We may avoid the loss of such plans by not pruning irrelevant CSQs and thus sacri�cing the polynomiality
of the plan construction algorithm. In this paper we will not consider this option.

In summary, the computation of the set of consumed subgoals is an important step of plan construction
because in order for a set of CSQs to form a plan it is a necessary condition that the union of their sets of
consumed subgoals includes every subgoal of the target query. However, this condition is not su�cient. The
join variables condition must also be satis�ed, as we discuss in the next section.

8.4.2 Join Variables Condition

Finding sets of CSQs that consume every subgoal of the target query does not complete the task of the
plan construction module. It is not always the case that if the union of consumed subgoals of some CSQs is
equal to the set of the target query's subgoals then the joining of the CSQs forms a plan. In this section we
describe a condition, which is tested by the plan construction module, and ensures that a set of CSQs can
be joined to form a plan.

In order to explain the condition we �rst present an example where the condition does not hold and
consequently we cannot form a plan. Consider an online employee database that can be queries for the
names of all employees in a given division. The database can also be queried for the names of all employees
in a given location. Further, the name of an employee is not uniquely determined by their location and
division. The employee database cannot be used to �nd employees in a given division and in a given location
by joining the results of two queries - one on division and the other on location. To see this, consider a query
that looks for employees in "CS" in "New York". Joining the results of two independent queries on division
and location will incorectly return as answer a person named "John Smith" if there is a "John Smith" in
"CS" in "San Jose" and a di�erent "John Smith" in "Electrical" in "New York".

Intuitively, the problem arises because the two independent queries do not export the information neces-
sary to correctly join their results. We can avoid this problem by checking that CSQs are combined only if
they export the join variables necessary for their correct combination. The theorem of Section 8.4.4 formally
describes the conditions on join variables that guarantee the correct combination of CSQs.

8.4.3 Passing Required Bindings via Nested Loops Joins

Computing the sets of consumed subgoals and testing for the join variables condition is su�cient for for-
mulating plans that combine queries using joins, selections, and projections. However, in heterogeneous
systems we can combine CSQs by passing join variable bindings from one CSQ to the other. In e�ect, the
CBR emulates nested loops joins in this way. We �rst illustrate nested loops joins using an example and
consequently we discuss the additional requirements posed on CBR for the discovery of plans utilizing nested
loops.

We may compute (Q62) by the following steps: �rst we execute (Q75); then we collect the department
names (i.e., the D bindings) and for each binding d of D, we replace the $D in (Q76) with d and send the
instantianted query to the wrapper. We use the notation /$D in the nested loops plan (P77) to denote that
(Q76) receives values for the $D placeholder from D bindings of the other CSQs { (Q75) in this example.

(Q75) answer75(F0,L0,D,O0) :- emp(F0,L0,D,O0,'Y')

(Q76) answer76(F1,L1,O1,M1) :- emp(F1,L1,$D,O1,M1)

(P77) answer(F0,L0,O1) :- answer75(F0,L0,D,O0), answer76(F1,L1,O1,M1)/$D

The introduction of nested loops and binding passing poses the following requirements on the CSQ discovery:

� CSQ discovery: A subgoal of a CSQ s may contain placeholders /$hvari, such as $D, in place of
corresponding join variables (D in our example.) Whenever this is the case, we introduce the structure
/$hvari next to the answers that appears in the plan. All the variables of s that appear in such a
structure are included in the set Bs, called the set of bindings needed by s. For example, B76 = fDg
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and B75 = fg. CSQ discovery previously did not use bindings information while deriving facts. Thus,
the algorithm derives useless CSQs that need bindings not exported by any other CSQ.

The optimized derivation process uses two sets of attributes and proceeds iteratively. Each iteration
derives only those facts that use bindings provided by existing facts. In addition, a fact is derived if
it uses at least one binding that was made available only in the very last iteration. Thus, the �rst
iteration derives facts that need no bindings, that is, for which Bs is empty. The next iteration derives
facts that use at least one binding provided by facts derived in iteration one. Thus, the second iteration
does not derive any subgoal derived in the �rst iteration, and so on. Algorithm 5 in Appendix D.3
formalizes this intuition.

The bindings needed by each CSQ of a plan impose order constraints on the plan. For example, the
existence of D in B76 requires that a CSQ that exports D is executed before (Q76). It is the responsibility of
the plan construction module to ensure that the produced plans satisfy the order constraints.

Evaluation The pruning of CSQs with inappropriate bindings prunes an exponential number of CSQs in
the following common scenario: Assume we can put an equality condition on any variable of a subgoal p.
Consider a CSQ s that contains p and assume that n variables of p appear in subgoals of the target query
that are not contained in s. Then we have to generate all 2n versions of s that describe di�erent binding
patterns. Assuming that no CSQ may provide any of the n variables it is only one (out the 2n) CSQs useful.

8.4.4 A Plan Construction Algorithm

In this section we summarize the conditions that are su�cient for construction of a plan. Then, we present an
e�cient algorithm that �nds plans that satisfy the theorem's conditions. Finally, we evaluate the algorithm's
performance.

Theorem 8.4.2 Given CSQs si; i = 1; : : : ; n with corresponding heads answeri(V i
1 ; : : : ; V

i
vi
), sets of maximal

consumed subgoals Ci and sets of needed bindings Bi, the plan

answer(V1; : : : ; Vm) : �answer1(V
1
1 ; : : : ; V

1
v1
); : : : ; answern(V

n
1 ; : : : ; V

n
vn
)

is correct if

� consumed sets condition: The union of maximal consumed sets [i=1;:::;nCi is equal to the target
query's subgoal set.

� join variables condition: If the set of maximal consumed subgoals of CSQ si has a join variable V
then every CSQ sj that contains V in its set of maximal consumed subgoals Cj exports V .

� bindings passing condition: If V 2 Bi then there must be a CSQ sj ; j < i that exports V .
2

Algorithm 3 in Appendix D.1 for plan construction is based on Theorem 8.4.2. The algorithm takes
as input a set of CSQs derived by the CSQ discovery process described later, and the target query Q. At
each step the algorithm selects a CSQ s that consumes at least one subgoal that has not been consumed
by any CSQ s0 considered so far and for which all variables of Bs have been exported by at least one s0.
Assuming that the algorithm is given m CSQs (by the CSQ discovery module) it can construct a set that
satis�es the consumed sets and the bindings passing conditions in time polynomial in m. Nevertheless, if
the join variables condition does not hold the algorithm takes time exponential in m because we may have
to create exponentially many sets until we �nd one that satis�es the join variables condition. However, the
join variables condition evaluates to true for most wrappers we �nd in practice (see following discussion) and
thus we usually construct a plan in time polynomial in m.

For every plan p there may be plans p0 that are identical to p modulo a permutation of the CSQs of
p. In the worst case there are np! permutations, where np is the number of CSQs in p. Since it is useless
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to generate permutations of the same plan, the algorithm creates a total order � of the input CSQs and
generates plans by considering CSQ s1 before CSQ s2 only if s1 � s2, i.e., the CSQs are considered in order
by �. Note, a query s2 must always be considered after a query s1 if s1 provides bindings for s2. Hence, �

must respect the partial order
�

b where s1
�

b s2 if s1 provides bindings to s2.

The plan construction algorithm �rst sorts the input CSQs in a total order that respects the PO
b
�.

Then it procedes by picking CSQs and testing the conditions of Theorem 8.4.2 until it consumes all subgoals
of the target query. The algorithm capitalizes on the assumption that in most practical cases every CSQ
consumes at least one subgoal and the join variables condition holds. In this case, one plan is developed in
time polynomial in the number of input CSQs. The following lemma describes an important case where the
join variables condition always holds.

Lemma 8.4.1 The join variables condition holds for any set of CSQs such that

1. No two CSQs of the set have intersecting sets of maximal consumed subgoals, or

2. If two CSQs contain the subgoal g(V1; : : : ; Vm) in their sets of maximal consumed subgoals then they
both export variables V1; : : : ; Vm.

2

Condition (1) of Lemma 8.4.1 holds for typical wrappers of bibliographic information systems and lookup
services (wrappers that have the structure of (D61)), relational databases and object oriented databases
{ wrapped in a relational model. In such systems it is typical that if two CSQs have common subgoals
then they can be combined to form a single CSQ. Thus, we end up with a set of maximal CSQs that have
non intersecting consumed sets. Condition (2) further relaxes the condition (1). Condition (2) holds for
all wrappers that can export all variables that appear in a CSQ. The two conditions of Lemma 8.4.1 cover
essentially any wrapper of practical importance.

8.5 Plan Re�nement

The plan re�nement module �lters and re�nes constructed plans in two ways.

� Eliminate algebraically non-optimal plans.

� Project out unnecessary variables from representative CSQs.

Eliminating algebraically non-optimal plans The fact that CSQs of the representative plans have
the maximum number of selections and joins and that plan re�nement pushes the maximum number of
projections down is not enough to guarantee that the plans produced are algebraically optimal. For example,
assume that CSQs s1 and s2 are interchangeable in all plans, and the set of subgoals of s1 is a superset of the
set of subgoals of s2 and s1 exports a subset of the variables exported by s2. The plans in which s2 participates
are algebraically worse than the corresponding plans with s1. Nevertheless, they are produced by the plan
construction module because s1 and s2 may both be maximal, and do not represent each other because they
are produced by di�erent template expansions. Plan re�nement eliminates algebraically non-optimal CSQs.

Projecting out unnecessary variables First we de�ne the notion of necessary variables of each rep-
resentative CSQ. Intuitively, this set contains the variables that allow the consumed set of the CSQ to
\interface" with the consumed sets of other CSQs in the plan. We formalize the notion and the signi�cance
of necessary variables by the following de�nition (note, the de�nition is not restricted to maximal consumed
sets:)

De�nition 8.5.1 (Necessary Variables of a Set of Consumed Subgoals:) A variable V is a necessary
variable of a consumed subgoals set Ss of some CSQ s if by not exporting V Ss is no longer a consumed set.
2
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The set of necessary variables are simply computed: Given a set of consumed subgoals S, a variable V
of S is a necessary variable if it is a distinguished variable, or if it is a join variable that appears in at least
one subgoal that is not in S.

Unecessary variables cannot always be projected out when the maximal consumed sets of the CSQs
intersect. For example, consider a wrapper that exports predicates emp and substring. Every supported
query has exactly one emp subgoal, at most one substring subgoal, and may export any subset of the emp
variables. The target query (Q78) can be computed by plan (P81).

(Q78) answer(F,L) :- emp(F,L,D,O,M), substring(D,'data'), substring(O,'B')

(Q79) answer79(F,L,D,O,M) :- emp(F,L,D,O,M), substring(D,'data')

(Q80) answer80(F,L,D,O,M) :- emp(F,L,D,O,M), substring(O,'B')

(P81) answer(F,L) :- answer79(F,L,D,O,M), answer80(F,L,D,O,M)

Having both queries export all the variables is useless. An obvious optimization is to replace (Q80) with
(Q82), which exports only the distinguished variables F and L and the join variable D.

(Q82) answer82(F,L,D) :- emp(F,L,D,O,M), substring(O,'B')

Indeed, variables F, L and D are the only necessary variables of the maximalconsumed subgoals set femp(F,L,D,O,M),
substring(O,'B')g.

However, reducing the exported variables of each representative query to the necessary variables of its
maximal consumed set may result in an incorrect plan. For example, replacing CSQ (Q79) with CSQ (Q83)
we construct the erroneous plan (P84). (P84) violates the join variables condition.

(Q83) answer83(F,L,O) :- emp(F,L,D,O,M), substring(D,'data')

(P84) answer(F,L) :- answer82(F,L,D), answer83(F,L,O)

The problem arises because the maximal consumed sets of (Q79) and (Q80) intersect. It can be
solved as follows: Since CSQ (Q82) consumes the subgoals emp(F,L,D,O,M) and substring(O,'B') we
can modify the exported variables of the representative CSQ (Q79) so that it consumes only the subgoal
substring(D,'data'). Thus, we can replace the representative CSQ (Q79) with the CSQ (Q85) that ex-
ports only the necessary variables of the set fsubstring(D,'data')g, i.e., D. Consequently, we can construct
the plan (P86).

(Q85) answer85(D) :- emp(F,L,D,O,M), substring(D,'data')

(P86) answer(F,L) :- answer82(F,L,D), answer85(D)

Symmetrically, we may assume that (Q79) consumes emp(F,L,D,O,M) and substring(D,'data') in which
case (Q80) consumes only substring(O, 'B') and hence we can produce the plan (P88).

(Q87) answer87(O) :- emp(F,L,D,O,M), substring(O,'B')

(P88) answer(F,L) :- answer83(F,L,O), answer87(O)

Intuitively, the plans (P86) and (P88) correspond to two di�erent partitions of the target query's subgoals
among the sets of consumed subgoals the two representative CSQs. In general, given a representative plan,
we may produce all plans that implement projections by partitioning the target query subgoals among the
representative CSQs. Thus, subgoals that are in the consumed sets of more than one representative query
are \assigned" to only one representative query. Then, we calculate the necessary variables for the \reduced"
consumed sets of the representative queries.

For ease of explanation we outline an algorithm to add projections to one representative CSQ s that
participates in a plan P for query Q (the algorithm is formally stated in Appendix D.2). The algorithm
produces possibly multiple plans with s replaced by a CSQ with fewer distinguished attributes. The algorithm
adds projections to s by pruning the set of maximal consumed subgoals of s as computed by Algorithm 2
and then checking if with the pruned set s still forms a plan to compute query Q. A smaller consumed set
for a CSQ results in fewer necessary variables and thus fewer distinguished attributes. Thus, if a smaller
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Technique Exponential factor eliminated

Pruning represented 2a, where a is the arity of the representative CSQ
CSQs (see Evaluation paragraph of Section 8.3.2)
Pruning non-maximal 2g, where g is the number of \optional" subgoals in the
CSQs maximal CSQ (see Section 8.3.3)
Pruning CSQs with 2n, where n is the number of variables that
inappropriate bindings may be or may not be bound
Magic Sets nm, where n is the arity of a predicate p and there are

another m predicates that involve variables of p (see Example 8.3.1)

Figure 8.2: Sources of Exponentiality Eliminated by CBR

consumed set for s is found to be su�cient to build a plan P , then the set of distinguished attributes of s
can be reduced thereby adding projections. The algorithm can be iteratively applied to each representative
CSQ in a plan.

Algorithm 4 is exponential in the size of the consumed subgoal set Cs. However, it can be optimized by
observing the following. If some subgoal in the maximal consumed set of s is not in the maximal consumed
set of any other CSQ in plan P , then this subgoal has to be present in all legal consumed subsets of s.
Thus, options are generated only by subgoals consumed by multiple CSQs. Thus, the algorithm becomes
exponential in the size of the largest intersection of the consumed sets of the representative CSQs.

8.6 Completeness and Performance of CBR

The CBR algorithm employs many techniques to eliminate sources of exponentiality that would otherwise
arise in many practical cases. Figure 8.2 lists these techniques along with an informal description of the
exponential factor they eliminate and the section or the example that illustrates how the exponential factor
might be generated. Remember that our assumption that every CSQ consumes at least one subgoal led to a
plan construction module that develops a plan in time polynomial to the number of CSQs produced by the
CSQ detection module, provided that the join variables condition holds. This is an important result because
the join variables condition holds for most wrappers in practice, as argued in Subsection 8.4.4. Of course,
the complexity of the full CBR remains exponential because the output of the CSQ discovery phase is in
general exponential in the size of the query and the description.

The CBR deals only with Select-Project-Join queries and their corresponding descriptions. It produces
algebraically optimal plans involving CSQs, i.e., plans that push the maximum number of selections, pro-
jections and joins to the source. However, the CBR is not complete because it misses plans that contain
irrelevant CSQs (see De�nition 8.4.2 and the discussion of Section 8.4.1.) On the other hand, the techniques
for eliminating exponentiality described in Table 8.2 preserve completeness, in that we do not miss any plan
through applying one of these techniques (see justi�cations in Sections 8.3.2, and 8.3.3).

8.7 Related Work

Signi�cant results have been developed for the resolution of semantic and schematic discrepancies while
integrating heterogeneous information sources. However, most of these systems [S+, HM93, A+91, Gup89]
do not address the problem of di�erent and limited query capabilities in the underlying sources because they
assume that those sources are full-
edged databases that can answer any query over their schema.8 The

8The work in query decomposition in distributed databases has also assumed that all underlying systems are relational and
equally able to perform any SQL query.
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recent interest in the integration of arbitrary information sources, including databases, �le systems, the Web,
and many legacy systems, invalidates the assumption that all underlying sources can answer any query over
the data they export and forces us to resolve the mismatch between the query capabilities provided by these
sources. Only a few systems have addressed this problem.

HERMES [S+] proposes a rule language for the speci�cation of mediators in which an explicit set of
parameterized calls can be made to the sources. At run-time the parameters are instantiated by speci�c
values and the corresponding calls are made. Thus, HERMES guarantees that all queries sent to the wrappers
are supported. Unfortunately, this solution reduces the interface between wrappers and mediators to a very
simple form (the particular parameterized calls), and does not fully utilize the sources' query power.

DISCO [TRV95] describes the set of supported queries using context-free grammars. This technique
reduces the e�ciency of capabilities-based rewriting because it treats queries as "strings."

The Information Manifold [LRO96] develops a query capabilities description that is attached to the
schema exported by the wrapper. The description states which and how many conditions may be applied
on each attribute. RQDL provides greater expressive power by being able to express schema-independent
descriptions and descriptions such as \exactly one condition is allowed." Nevertheless, there is an interesting
similarity between the CBR algorithms and the information �nding algorithms of the Information Manifold:
The former �nd possible ways to execute a client query, i.e., they �nd combinations of supported queries
that, when combined, they are equivalent to the client query. Information Manifold �nds combinations of
source supported queries which, when combined, are subsumed by the client query and hence they are a
possible solution to the problem.

TSIMMIS suggests an explicit description of the wrapper's query capabilities [PGGMU95], using the
context-free grammar approach of the current paper. (The description is also used for query translation
from the common query language to the language of the underlying source.) However, TSIMMIS considers a
restricted form of the problem wherein descriptions consider relations of prespeci�ed arities and the mediator
can only select or project the results of a single CSQ.

This paper enhances the query capability description language of [PGGMU95] to describe queries over
arbitrary schemas, namely, relations with unspeci�ed arities and names, as well as capabilities such as
\selections on the �rst attribute of any relation." The language also allows speci�cation of required bindings,
e.g., a bibliography database that returns \titles of books given author names." We provide algorithms for
identifying for a target query Q the algebraically optimal CSQs from the given descriptions. Also, we provide
algorithms for generating plans for Q by combining the results of these CSQs using selections, projections,
and joins.

The CBR problem is related to the problem of determining how to answer a query using a set of ma-
terialized views [LY85, LMSS95, RSU95, Qia96]. However, there are signi�cant di�erences. These papers
consider a speci�cation language that uses SPJ expressions over given relations specifying a �nite number of
views. They cannot express arbitrary relations, arbitrary arities, binding requirements (with the exception
of [RSU95]), or in�nitely large queries/views. Also, they do not consider generating plans that require a
particular evaluation order due to binding requirements.

[LMSS95] shows that rewriting a conjunctive query is in general exponential in the total size of the query
and views. [Qia96] shows that if the query is acyclic we can rewrite it in time polynomial to the total size of
the query and views. [LMSS95, RSU95] generate necessary and su�cient conditions for when a query can be
answered by the available views. By contrast, our algorithms check only su�cient conditions and might miss
a plan because of the heuristics used. Our algorithm can be viewed as a generalization of algorithms that
decide the subsumption of a datalog query by a datalog program (i.e., the description). Recently [LRU96]
proposed Datalog for the description of supported queries. It also suggested an algorithm that essentially
�nds what we call maximal CSQs.
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Appendix A

MSL Syntax

A complete syntax for the MSL language appears in Figure A.1. Figure A.2 provides the syntax of normal
form MSL. Note, that the de�nitions of hobjecti, hobject conditioni, and hvalue conditioni are much simpler
in the normal form and hresti has been eliminated.
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(0) hspeci�cationi ::= Rules hrulesi [External hexternal pred defsi]
(1) hrulesi ::= hrulesi hrulei

j �
(2) hrulei ::= hhead i : � hcondition listi :
(3) hhead i ::= hobjecti

j hpredicate namei ( hargument listi )
(4) hobjecti ::= hvariablei

j < [hobject id i] hlabeli hvaluei >
(5) hobject idi ::= htermi
(6) htermi ::= hfunction symboli ( hterm listi )

j hsimple termi
(7) hterm listi ::= hterm listi ; htermi

j htermi
(8) hsimple termi ::= hvariablei

j hconstant i
(9) hlabeli ::= hsimple termi
(10) hvaluei ::= hsimple termi

j f hsubobjects listi g
(11) hsubobjects listi ::= hsubobjects listi hobjecti

j �
(12) hargument listi ::= hargument listi ; htermi

j htermi
(13) hcondition listi ::= hcondition listi AND hconditioni

j hconditioni
j TRUE

(14) hconditioni ::= hobject conditioni @ hsitei
j hpredicate namei ( hargument listi )
j hpredicate namei ( hargument listi ) @ hsitei

(15) hobject conditioni ::= [hobject variablei :]
< [hobject idi] hlabeli hvalue conditioni >

(16) hvalue conditioni ::= hsimple termi
j [hset variablei :] f hobj cond listi [j hresti] g

(17) hresti ::= hset variablei [: f hobj cond listi [j hresti] g]
(18) hobj cond listi ::= hobject cond listi hobject conditioni

j �
(19) hsitei ::= hsimple termi
(20) hexternal pred defsi ::= hexternal pred defsi hexternal pred def i

j �
(21) hexternal pred def i ::= hpred namei ( htype listi ) ( hbinding listi )

impl by hC function namei
(22) htype listi ::= htype listi ; htypei

j htypei
(23) hbinding listi ::= hbinding listi ; hbinding i

j hbindingi
(24) hbinding i ::= boundjfree

Figure A.1: MSL's Syntax
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hspeci�cationi ::= Rules hrulesi [External hexternal pred defsi]
hrulesi ::= hrulesi hrulei

j �
hrulei ::= hhead i : � hcondition listi :
hhead i ::= hobjecti

j hpredicate namei ( hargument listi )
(25) hobjecti ::= < hobject idi hlabeli hvaluei >

j � hvariablei
hobject idi ::= htermi
htermi ::= hfunction symboli ( hterm listi )

j hsimple termi
hterm listi ::= hterm listi ; htermi

j htermi
hsimple termi ::= hvariablei

j hconstant i
hlabeli ::= hsimple termi
hvaluei ::= hsimple termi

j f hsubobjects listi g
hsubobjects listi ::= hsubobjects listi hobjecti

j �
hargument listi ::= hargument listi ; htermi

j htermi
hcondition listi ::= hcondition listi AND hconditioni

j hconditioni
j TRUE

hconditioni ::= hobject conditioni @ hsitei
j hpredicate namei ( hargument listi )
j hpredicate namei ( hargument listi ) @ hsitei

(26) hobject conditioni ::= < hobject idi hlabeli hvalue conditioni >
(27) hvalue conditioni ::= hsimple termi

j f hobject cond listi g
hobj cond listi ::= hobject cond listi hobject conditioni

j �
hsitei ::= hsimple termi
hexternal pred defsi ::= hexternal pred defsi hexternal pred def i

j �
hexternal pred def i ::= hpred namei ( htype listi ) ( hbinding listi )

impl by hC function namei
htype listi ::= htype listi ; htypei

j htypei
hbinding listi ::= hbinding listi ; hbindingi

j hbindingi
hbindingi ::= boundjfree

Figure A.2: Syntax of Normal Form MSL
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Appendix B

MSL Semantics

B.0.1 Safety and Typing Restrictions

MSL enforces the safety restriction that all variables appearing in the head of an MSL rule must also appear
in its tail. MSL also enforces the following typing restrictions on the use of variables. The expression of the
typing restrictions is based on the variable's categorization that was described in Section 5.5.1:

1. No object, rest, or value variable that binds to sets only can also be an atomic variable. For example,
the following MSL rule is prohibited because the variable O appears as an object variable (in the head)
and as an atomic variable (in the tail).

O :- <O V>@src

2. No object variable, rest variable, or value variable that binds to sets only may appear two times in the
MSL rule tail. For example, the following rule is prohibited

O:- <l1 V:{<l2 v1>}>@src AND <l3 V>@src

Whenever comparison of non-atomic variables is required appropriate set comparison (or object com-
parison) predicates should be used.

B.0.2 Reduction of Normal-Form MSL Rules to Datalog Rules

In this section we describe the reduction of an MSL speci�cation that consists of normal-form MSL rules
to a Datalog program (that may contain function symbols). Every normal-form MSL rule RN

i ; 1 � i � r,
where r is the number of normal-form MSL rules, reduces to a set of datalog rules RD

i . The concatenation
of all the Datalog rules of sets RD

i , together with three generic rules, that are speci�ed in Subsection B.0.2,
constitute the Datalog program that speci�es the semantics of the MSL speci�cation. Note, from now on
whenever we write \MSL rule" we will imply \normal-form MSL rule".

For every MSL rule RN
i of the mediator speci�cation we generate a set RD

i of datalog rules. RD
i contains:

1. one rule of the form
bind i( �W ) : � hdatalog conditioni

where �W is the set of variables that appear in the MSL rule head. The hdatalog conditioni is derived
by reducing the MSL rule's tail to a conjunction of datalog literals, following the steps described in
Subsection B.0.2. Note, whenever there is no confusion about which rule we are talking about we will
refer to bind i simply as bind .
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2. l rules of the form
head j( �Y ) : �bind ( �W )

where the head j datalog rule heads are derived by reducing the MSL rule's head to datalog, following
the steps described in Subsection B.0.2.

Reduction of the MSL Rule's Tail

The MSL rule's tail is translated into a conjunction of Datalog literals, i.e., a conjunction of one or more
object , member , top, external predicates, and source speci�c predicates, that specify which are the acceptable
bindings for the set �W of interesting variables. The following rules formalize the reduction of the MSL rule
tail into a conjunction of literals, by associating reduction actions with the productions of the MSL syntax
(Figure A.1):

� hcondition listi: Every condition ci ; 1 � i � m of the condition list of an MSL rule tail results in a
conjunction Ci of one or more datalog literals. The tail of the datalog rule is the conjunction of all the
literals that appear in all Ci ; 1 � i � m.

� hconditioni: An MSL condition c results in a conjunction C of one or more datalog literals, depending
on whether the condition is an object condition or a predicate:

1. if hconditioni is a \top object condition" (see Figure A.1), i.e. has the form

<hoidi : : :>@hsrci

the condition reduces to a conjunction C of the literals resulting from the object condition
<hoidi : : :> (see action associated with hobject conditioni) and the literal

top(hsrci; hoidi)

2. if hconditioni is an \external predicate condition" (see Figure A.1) that has the form

pred(hargi
1
, hargi

2
, : : :, hargin)

where hargi
i
; 1 � i � n are the arguments of the predicate, the predicate condition results in the

datalog literal (that can be seen as a trivial conjunction)

ext pred(hargi
1
; hargi

2
; : : : ; hargin)

We changed the name of the predicate from pred to ext pred to avoid confusing it with some
source predicate with the same name.

3. if hconditioni is a \source predicate condition" that has the form

pred(hargi1, hargi2, : : :, hargin)@hsrci

where hargii ; 1 � i � n are the arguments of the predicate and hsrci is a simple term that stands
for the source, the source predicate reduces to the datalog literal (that can be seen as a trivial
conjunction):

pred(hsrci; hargi
1
; hargi

2
; : : : ; hargin)

� hobject conditioni: The reduction of the object condition to a literal conjunction depends on whether
the value of the object condition binds to atomic constants only, sets only, or anything:

1. if the object condition has the form

<hoidi hlabeli hconstant i>

it reduces to the datalog literal

object(hsrci; hoid i; hlabeli; hconstanti)

where hsrci is the term that describes the source against which the object condition is evaluated.
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2. if the object condition has the form

isatom:<hoidi hlabeli hvariablei>

it reduces to the conjunction of datalog literals

object(hsrci; hoid i; hlabeli; hvariablei) ^ ext neqset(hvariablei)

where hsrci is the term that describes the source against which the object condition is evaluated
and ext neqset is a predicate that is satis�ed when its argument does not have the value set .

3. if the object condition has the form

<hoidi hlabeli f<hoid1 i : : :> <hoid2 i : : :> : : : <hoidn i : : :>g>

then we introduce in the datalog condition

(a) the literal
object(hsrci; hoidi; hlabeli; set)

(b) the literals that describe that the object identi�ed by hoid i has subobjects that are identi�ed
by hoid ii ; 1 � i � n

member(hsrci; hoidi; hoidi
1
)

member(hsrci; hoidi; hoidi
2
)

...
member(hsrci; hoidi; hoidin)

(c) the literals that result from the reduction of the subobject patterns <hoid1 i : : :> : : : <hoidn i : : :>
to conjunctions of datalog literals.

Reduction of MSL Rule's Head

We reduce every MSL rule's head to a set of datalog rules heads and we attach to each datalog rule head
the tail bind ( �W ) thus getting a set of datalog rules that correspond to the MSL rule.

� if the head is an \exported predicate" (see Figure A.1) that has the form

pred(harg1 i; : : : ; hargni)

where harg1 i; : : : ; hargni are the arguments, we create the datalog rule

pred(hmednamei; hargi1; : : : ; harg2 i) : �bind (
�W )

where hmednamei is the name of the mediator we specify.

� if the head has the form
$hoidi

then we introduce the datalog rules

top(hoid i) : �bind ( �W )
pick (hmednamei; hsrci; hoidi) : �bind ( �W )

where hsrci is a simple term (variable or constant) that describes the source of the objects identi�ed
by hoidi (hsrci can be trivially found by inspecting the MSL rule's tail). The predicate pick fetches
the object identi�ed by hoidi together with all its subobjects.

� if the head is a \generated object" that has the form

<hoidihlabelihtypei hgenerated valuei>
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and results in one or more datalog rules depending on the form and properties of the hgenerated valuei:

{ if hgenerated valuei is a constant c or a variable V (that, by now, we can be sure that it binds to
atomic constants only) then we introduce the datalog rule

object(hmednamei; hoidi; hlabeli; hgenerated valuei) : �bind ( �W )

{ if hgenerated valuei is a subobjects list that has the form

f<hoid1 i : : :> : : : <hoidn i : : :> $hrefoid1 i : : : $hrefoidmig

1 we introduce:

1. the datalog rule
object(hmednamei; hoidi; hlabeli; set; set)

2. the datalog rules that specify that the objects identi�ed by

hoid1 i; : : : ; hoidn i; hrefoid1i; : : : ; hrefoidmi

are subobjects of the object identi�ed by hoidi

member(hmednamei; hoidi; hoidii) : �bind ( �W )
member(hmednamei; hoidi; hrefoidj i) : �bind ( �W )

where 1 � i � n and 1 � j � m.

3. the datalog rules that result from the reduction of the head object patterns

<hoid1 i : : :> : : :<hoidn i : : :>

to datalog conditions.

4. the datalog rules that \copy" the objects identi�ed by hrefoid1 i; : : : ; hrefoidmi from hsrci to
hmednamei

pick(hmednamei; hsrci; hrefoidj i) : �bind ( �W )

where 1 � j � m.

Copying Objects from Source to Destination

The following three generic rules are attached to every datalog program and are used for copying an object
together with its subobjects from a source S to a mediator M :

object(D;O;L; V ) : �pick (D;S;O) ^ object(S;O; L; V )
member(D;O1; O2) : �pick(D;S;O1) ^member(S;O1; O2)
pick(D;S;O2) : �pick (D;S;O1) ^member(S;O1; O2)

B.0.3 Evaluable External Predicates

Rules that contain external predicates may not be evaluable. For example, consider the external predicate
decompose name that was described in Section 4.1. We may not have a rule such as

<name {<last_name LN> <first_name FN>}> :- decompose_name(N, LN, FN)

because the predicate decompose name can not produce bindings for LN and LN without �rst being given a
binding for N.

We formalize the notion of evaluable rules that contain external predicates, as follows: A rule is evaluable
if there is a permutation of the conditions of the rule tail, such that if the external predicate p appears as the
i-th condition of the tail, then there is an implementation of p such that in the place of bound arguments
appear terms that contain constants and variables that appear in the conditions that precede p.

1Without loss of the generality we assume that the $ patterns follow the <...> patterns.
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Appendix C

Extended Algorithm QinP

This appendix provides the formal description of the algorithm X-QinP that �nds the maximal supporting
queries of a given query q, given a QDTL description d. We recall that X-QinP is based on the Algorithm
QinP (Section 14.5 of [Ull89]) that gives a yes/no answer to the containment question and thus to the support
question, modulo the existence of a �lter query. We extend the algorithm to �nd the maximal supporting
queries, to construct the corresponding �lter queries, and and to construct the corresponding parse trees.
Note, we assume q has been translated to a conjunctive query (using the OEM-to-relational reduction
presented in Appendix B) and d has been translated to a Datalog program as illustrated in Section 7.5.1.

In particular, we extend and modify the algorithm QinP in the following ways:

1. we keep track of which speci�c expansion of the Datalog program actually contains the query and thus
infer the conditions that constitute the residue for the expansions,

2. we keep track of the implied equalities. An implied equality arises when we map a variable to a constant.
For example, consider the query

(Q89) answer(O) :- top(O), object(O,L,V)

that supports the query

(Q90) answer(O) :- top(O), object(O,person,V)

Note, we have to �lter the result of Q89 to keep only the objects with label person. We will say that
the corresponding �lter has to check the implied equality L = person. Thus, we keep the subgoal
object of Q90 in the residue, though it maps to the object subgoal of Q89.

3. we �nd \maximal" expansions that have as many conditions of the target query as is possible given
the description,

4. we relax the condition that the head of the expansion is the same as the query head to allow the head
of the expansion to represent a parent object of the query head,

5. we check that the residue conditions can be evaluated, and

6. we construct the �lter that evaluates them.

The algorithm X-QinP follows four basic steps (there are comments in the algorithm that indicate the
start of each step):

� Step 1: Find the queries with minimal residue with respect to the input query.
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� Step 2: Select the maximal subsuming queries, i.e. the minimal residue queries that pick objects that
contain the required objects.

� Step 3: Select the maximal supporting queries, i.e. check the existence of an appropriate �lter query
for every selected maximal subsuming query.

� Step 4: For every maximal supporting query construct an optimal �lter query, in the sense that the
constructed �lter query has as few conditions as possible.

Note, in order to simplify the description of our algorithm we do not include metapredicates and we do
not describe the execution of actions. We also provide the following useful de�nition

De�nition C.0.1 (Minimal residue instance) Any instance t =< ft; Ut; It; At; Pt > is called minimal
residue instance if there is no t0 =< ft0 ; Ut0; It0 ; At0; Pt0 > such that Ut � Ut0 and It0 � It. 2

Input
Conjunctive Query Q where head is of the form answer(X)
Description P (D) (recursive Datalog program that

de�nes answer and uses EDB member, object, top)
Output

A set of maximal supporting queries, associated �lters, and associated parse trees
Method

Minimize the query Q (see [Ull89]), i.e. remove all rendundant subgoals
Freeze the query Q { replace each variable A with a constant �a

% Start of Step 1 : Computation of minimal residue instances
% add the frozen facts to DB along with the set of underlying facts and implied equalities
For each ground fact f obtained from the frozen body of Q add to DB

the �ve-tuple < f;U; I; A; P > where
U = ffg % set of underlying facts for f
I = fg % set of implied equalities used to derive f
A = fg % set of residue facts resulting from I
P = f % parse tree associated with the fact

The �ve-tuple < f;U; I; A; P > is called an \instance of fact f".
% Apply the rules of P (D) to the facts in DB to generate all possible ground facts
% along with their underlying facts, implied equalities, and parse trees
For all rules that have an empty body, \h( �H) : �"

Add the fact < h(c); fg; fg; fg;nil > to DB for all constants and frozen constants c in DB.
Loop
For 1 � i � k where k is the number of rules in description P (D) do
Let rule ri be:

h( �H) : �p1( �X1); : : : ; pn( �Xn)
where �X is the set of variables and placeholders in �H [ �X1 [ : : :[ �Xn

For each assignment � that:
1. maps variables V in �X to constants and frozen constants
2. maps every placeholder V in �X to a constant
3. there exists a vector [t1; : : : ; tn]

such that tj =< �(pj( �Xj)); Uj ; Ij; Aj; Pj > and tj is in DB
do % derive \optimal" instances of �(h( �H))

Initialize sets Itemp and Atemp to fg.
For each variable V in �X that � maps to a constant

Add the mapping V ! �(V ) to Itemp % Add an implied equality
Find a �(pj( �Xj)), such that V 2 Xj , insert �(pj( �Xj)) in Atemp
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% For each valid instantiation of rule ri, add an instance of a fact to DB
(A) For every vector [t1; : : : ; tn] where tj =< �(pj( �Xj)); Uj ; Ij; Aj; Pj > and tj is in DB

Let tnew =< fnew;Unew; Inew; Anew; Pnew > =
< �(h( �H));

Sn

j=1(Uj);
Sn

j=1(Ij) [ Itemp;
Sn

j=1(Aj) [Atemp; node(ri; [P1; : : : ; Pn]) >

For all t 2 DB of the form < fnew; Ut; It; At; Pt >
% Discard tnew if it uses fewer subgoals and
% has more implied equalities than some t 2 DB
If Unew � Ut and Inew � It
continue with next iteration of (A)

% Discard t if it uses fewer subgoals and has
% more implied equalities than tnew
If Ut � Unew and It � Inew
Remove t from DB

% Add \better" or incomparable new instances
Add tnew to DB

Until no new instances of facts are derived

% Step 2: Find all maximal subsuming queries
For each instance t =< f;Ut; It; At; Pt > in DB such that

assuming that answer(�x) is the frozen head of query Q, either
f = answer(�x), or
f = answer(�y) and there is a sequence of member facts

member(�x; �s1); : : : ; member( �sn; �y), i.e. �y is reachable from �x
residue(t) = ((subgoals in frozen tail(Q)) minus Uf ) union Af

% Step 3: Check if an appropriate �lter f exists for the query q represented by t
% if f exists then q is a maximal supporting query
if t =< answer( �w); Ut; It; At; Pt > satis�es the following conditions

1. for every subgoal object(�z; L; V ) or member(�z; �z0) there is a sequence of member facts
member( �w; �s1); : : : ; member( �sn; �z), n � 0, i.e. �z is reachable from �x

2. there is no frozen constant �v that appears in more than two subgoals such that
an instance of �v appears in residue(t) and
another instance of �v is not reachable from �w via member facts

% Step 4: Construct �lter and maximal subsuming query
For each instance t =< f;Uf ; If ; Af ; Pf > do

Initialize store to be the empty set
For each subset S of body(Q) such that S is a superset of residue(t) do

if Q is equivalent to \head(Q) : �NV (Uf ); S" then
% NV replaces each frozen constant �x with a unique variable X0 except

% the argument of f that is replaced by the unfrozen variable X
add S to store

Eliminate all S 2 store if 9S0 2 store such that S0 � S
For each remaining S 2 store

output query head(Q) : �f; S as the �lter query.
else discard t
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Appendix D

CBR Appendix

(28) hdescriptioni ::= (hquery templateijhnonterminal templatei)�
(29) hquery templatei ::= answer( hpredicate argumentsi ) : � hsubgoal listi
(30) hnonterminal templatei ::= hnonterminal namei ( hargumentsi ) hsubgoal listi
(31) hsubgoal listi ::= hsubgoal i (; hsubgoal i)�
(32) hsubgoal listi ::= � %subgoal list may be emtpy
(33) hsubgoal i ::= hpredicatei ( hargumentsi ) %predicate
(34) hsubgoal i ::= hmetapredicate namei ( hargumentsi ) %metapredicate
(35) hsubgoal i ::= hnonterminal namei ( hargumentsi ) %nonterminal
(36) hargumentsi ::= hvector ijhvariablei (; hvariablei)�
(37) hpredicate namei ::= hidenti�er ijhplaceholderi
(38) hmetapredicate namei ::= hidenti�er i
(39) hnonterminal namei ::= hidenti�er i

Figure D.1: Normal-form RQDL syntax

D.1 Algorithm for Plan Construction

Algorithm 3
Input: A set of CSQs fs1; : : : ; smg

A target query Q
Output: A set of plans that satisfy Theorem 8.4.2 and no two plans contain exactly the same CSQs

Method: Invoke procedure sort(fs1; : : : ; smg, L0) % sort input in L0 using
b
�

Invoke procedure plan(L0,fg)

Procedure plan(L;P )
% P is list of CSQs that form part of a plan (the �rst CSQs of the plan's tail)
% L is a sorted list of CSQs that are considered for generating P
% sub(P ) refers to the union of the consumed sets Ci of the CSQs si of the set P
If sub(P ) is equal to the set of subgoals of the target query Q
output plan \hQ head i :- hs1 head i : : : hsn headi" where P = [s1; : : : ; sn]

Else
Scan L from the start to the end until we �nd a CSQ s such that
Cs has at least one subgoal not in sub(P ) % s consumes at least one more subgoal
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% Bindings needed by s are available
All variables V of Bs are either exported by at least one CSQ in P

or there is a predicate equal(V;W) and W is exported by at least one CSQ in P
If no s is found return % no plan can be derived
Else
% De�ne for s JV(s) the set of join variables corresponding to joins not pushed down
For each variable V of each consumed subgoal of s

If equal(V;W) occurs in Q and W is in a subgoal not consumed by s
Add V to JV(s)

% check join variables condition of Theorem 8.4.2
For each variable V in JV(s) such that equal(V,W) occurs in Q

Ensure W is exported by each CSQ in P that has a consumed subgoal using W .
For each CSQ p 2 P

For each variable V in JV(p) such that equal(V,W) occurs in Q and W appears in s
Ensure W is exported by s

Invoke plan(L0,P 0), where L0 is the su�x of L that follows s and P 0 = concatenate(P; [s])
Invoke plan(L0,P ) % �nd all plans that do not have s

D.2 Algorithm for Plan Re�nement

Algorithm 4
Input: Plan P involving representative CSQ s.
Output: One or more plans with s replaced by a CSQ with fewer distinguished attributes
Method:

% Prune the set of maximal consumed subgoals of s
For each subset M of the set of maximal consumed subgoals of s

Replace annotation Cs by M
% Check that the resulting plan is legal
% sub(P ) refers to the union of the maximal consumed sets of plan P
If sub(P ) contains all subgoals of Q then proceed else discard M
% consumes all subgoals
Compute set of necessary variables V of s as per De�nition 8.5.1.
If V is not a subset of the set of variables exported by s
discard M

Else replace the set of exported variables of s by V to construct a new plan P 0

% Check if P 0 is an algebraically optimal plan and discard plans
% that are algebraically worse than P 0

for every discovered plan P 00

if P 0 is algebraically worse (see De�nition 8.2.1) than P 00

discard P 0 and exit loop
else if P 00 is algebraically worse than P 0

discard P 00

D.3 Bottom-up Algorithm for deriving CSQs

The algorithm below ensures that only CSQs with appropriate binding patterns are derived.

Algorithm 5
Input: A set of production rules of description D.
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Set of frozen facts F corresponding to the target query Q.
Output: All facts derivable from applying D to F
Method:

Initialize to fg the set (A) of frozen constants available in answer derived facts.
Initialize to fg the set (NA) of frozen constants newly available in answer derived facts.
Repeat until no new facts are derived

For each rule r in the description
Apply rule r to base facts as per Algorithm 6
% Eliminate facts that use bindings not yet available
Eliminate facts that have in annotation (b) a frozen constant x where x 62 A
% Eliminate facts that do not use at least one new binding
Eliminate facts that do not have in annotation (b) a frozen constant x where x 2 NA

% Update the sets of available and newly available frozen constants
Add the set of frozen constants in the heads of the new derived facts to (NA)
Remove from (NA) those frozen constants also present in (A)
Add (NA) to (A)

The algorithm below describes how to evaluate a single rule bottom up in a magic-sets rewritten program.

Algorithm 6
Input: Production rule R

A set of frozen base facts
A set of derived facts s associated with annotations:

Cs, the set of frozen facts of the initial database that have been used for deriving s
Bs, the set of variables needed by the subgoals that correspond to the facts of Cs

Output: Derived facts + annotations obtained by �ring R using frozen and derived base facts.
Method:

% Each alternate uni�cation may yield many facts.
Unify each subgoal in the body of R with a base fact deriving fact n

% constants unify with similarly named constants
% place holders unify with constants/frozen constants
% variables unify with constants, frozen constants, variables
% vector variables unify with vector variables, vectors of constants/variables

For each equal subgoals s
if s equates a frozen variable x to itself, then s can be ignored
if s equates two di�erent frozen variables then the whole uni�cation fails
if s equates a frozen constant c and a place holder then add c to annotation Bn

For each subset subgoal s = subset(Sub,Super)
if Sub and Super are di�erent vector variables, then uni�cation fails
if Sub and Super are instantiated vectors and Sub is not a subset of Super, then fail.
if only Super is instantiated then equate Sub to the same vector.
In all other cases uni�cation fails

For each in subgoal s = in(Pos,Ele,Vector)
if Pos,Ele,Vector or Ele,Vector are instantiated, evaluate subgoal to true/false
if Pos,Vector are instantiated then assign Ele the appropriate value
if Vector is instantiated then assign Pos, Ele all possible values
In all other cases uni�cation fails

For each non-meta subgoal s
Add Cs to Cn
Add Bs to Bn

% Eliminate non-maximal facts
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If derived fact n has smaller annotation Cn, larger Bn,
same set of exported variables, than some existing fact n0

do not add n to set of derived facts.

D.4 Syntax and Semantics of RQDL

In this section we formally present the syntax and semantics of RQDL. We focus on normal-form RQDL.
( We may reduce non-normal form descriptions to normal form applying the transformations described in
Section 8.1.4.)

The syntax appears in Figure D.1. Furthermore, we restrict to descriptions where there is a nonterminal
template, with matching arity, for every nonterminal that appears in a template. Additionally, for the imple-
mentation reasons described in Section 8.3 we restrict to descriptions where all nonterminals are grounded
(see De�nition 8.3.3).

The following de�nitions formally de�ne the set of queries that is described by a description. First we
de�ne the set of expansions of a query template. Then we use the set of terminal expansions, i.e., the set
of expansions that do not contain any nonterminal, for de�ning the set of queries described by terminal
expansions and hence described from the description. Note, from a syntactical viewpoint expansions are
equivalent to templates.

De�nition D.4.1 (Set of expansions Et of query template t) The set of expansions Et contains

1. the template t

2. every expansion e derived by permuting the subgoals of an expansion g 2 Et

3. every expansion e derived by renaming the variables, vectors, and placeholders of an expansion g 2 Et

4. every expansion e of the form

hanswer predicatei : � hN de�nition bodyi; hother subgoalsi

such that there is an expansion g 2 Et that has the form

hanswer predicatei : � N (hargumentsi); hother subgoalsi

and a nonterminal template of the form

N (hde�nition argumentsi) : hN de�nition bodyi

where

(a) the nonterminal template and the expansion e have no common variable,

(b) there is a collection of mappings � such that �(N (harguments i)) is identical to
�(N (hde�nition argumentsi)). We call � a uni�er. De�nition D.4.2 formally de�nes the applica-
tion of a uni�er on an RQDL expression.

2

De�nition D.4.2 (Application of uni�er on RQDL expression) Given the RQDL expression e, where
e may be subgoal, subgoal list, or nonterminal template head, and the uni�er �, �(e) is computed by the
following steps

1. If � contains a mapping of the form hplaceholderi 7! hconstant i, or hvariablei1 7! hvariablei2, or
hvectori1 7! hvector i2 then replace all instances of hplaceholder i, hvariablei1, and hvectori2 with
hconstanti, hvariablei2, or hvectori2 respectively.
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2. If � contains a mapping of the form hvectori 7! [hvariable listi] replace all instances of hvectori that
appear in metapredicates with [hvariable listi] and all the other instances with hvariable listi.

2

De�nition D.4.3 (Set of terminal expansions Tt of query template t) The set of terminal expansions
Tt of a template t consists of all expansions of Et that do not contain a nonterminal. 2

De�nition D.4.4 (Set of queries described by query template t) The set of queries described by
query template t consists of all queries that are obtained by applying the following transformations to an
expansion g 2 Tt

1. replace every vector with a variable list,

2. replace every placeholder with a constant,

3. remove all metapredicates that evaluate to true

If there is at least one metapredicate left then the transformed expansion is not a query. 2

We do not have to include all permutations of subgoals and renamings of variables in the above because Tt
contains all expansions we can rerive by sungoals permutations and variable renaming.
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