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Abstract

We study the inference of Data Type Definitions
(DTDs) for views of XML data, using an abstrac-
tion that focuses on document content structure. The
views are defined by a query language that produces
a list of documents selected from one or more in-
put sources.
cal and horizontal navigation, thus querying explic-
itly the order present in input documents. We point
several strong limitations in the descriptive ability of
current DTDs and the need for extending them with
(i) a subtyping mechanism and (ii) a more powerful
specification mechanism than regular languages, such
as context-free languages. With these extensions, we
show that one can always infer tight DTDs, that pre-
cisely characterize a selection view on sources satisfy-
ing given DTDs. We also show important special cases
where one can infer a tight DTD without requiring ex-
tension (ii). Finally we consider related problems such
as verifying conformance of a view definition with a
predefined DTD. Extensions to more powerful views
that construct complex documents are also briefly dis-
cussed.

The selection conditions involve verti-

1 Introduction

Data on the World Wide Web has structure that is
irregular or only partially known. This is a signifi-
cant departure from the traditional database frame-
work geared towards highly-structured data described
uniformly by a rigid schema. It requires the design
of appropriate languages for querying Web data, and
new approaches to flexible typing and static analysis.

Recent research on semistructured data in the
database community has attempted to address this
challenge (see [ABS99] and the surveys [Bun97, Abi97,
Suc]). The emergence of the Extended Markup Lan-
guage (XML) as the likely future standard for repre-
senting data on the Web has confirmed the central role
of semistructured data but has also redefined some of
the ground rules. Perhaps the most important is that
XML marks the “return of the schema” (albeit loose
and flexible) in semistructured data, in the form of its

Data Type Definitions! (DTDs). This is significant,
because schematic information is essential at all levels
of database design, implementation, and usage.

DTDs describe the structure of the objects (or “ele-
ments”) participating in an XML document. A DTD
specifies, for each type of object, the allowed sequences
of types of its subobjects (see Figure 1 for an ex-
ample DTD). Additionally, DTDs may specify infor-
mation such as attributes or special content for each
type. DTDs can have multiple uses in creating views
and querying XML data. QBE-style query interfaces
[MP, BT99] may use DTDs to display the “schema”
of a view and allow users to navigate it. DTDs may
help in the design of the storage structures. Mediators,
which create integrated views by selecting and restruc-
turing source data, use DTDs to optimize the queries
that they send to the sources [PV, PV99a]. Semistruc-
tured databases use DTDs to semantically optimize
their query plans [FS98]. Finally DTDs may guide the
production of style sheets, such as XSL scripts [CD],
that display XML documents as browser-compatible
HTML documents [Si, Bi].

It is clear that DTDs will be particularly useful.
Mediators and databases that create views of XML
data will have to export the views’ DTDs. However,
creating a view DTD “manually” by delving into the
details of the source DTDs is error-prone and may
become the bottleneck of the (integrated) view devel-
opment. This paper studies the automatic inference
of view DTDs from source DTDs.

Formal framework We use an abstraction of XML
documents and DTDs that focuses on document struc-
ture. XML documents are modeled as ordered trees
with labeled nodes. Nodes correspond to XML ele-
ments and their labels provide the type names of the
elements. The children of a node are totally ordered.
A DTD is modeled as a labeled tree definition (Itd),
that associates with each type name a language on
the alphabet of type names. Although DTDs use only
regular languages, we also consider ltds that use more
powerful languages, such as context-free.

To study DTD inference for views we introduce a
view definition language that queries labeled ordered

1The recent XML-Data and DCD [LJM™] standards also

provide “loose” schemas for XML documents.



trees. The language allows conditions on the order
of elements in the input and also controls the or-
der of elements in the output. Queries extract vari-
able bindings from the input using a tree pattern in-
volving reqular expressions to navigate both vertically
and horizontally. Horizontal regular expressions pro-
vide a powerful way to query the order of the nodes.
They are encountered in some semistructured query
languages [CDSS98] and scamlessly couple with the
more commonly used regular path expressions for ver-
tical navigation [Suc, Abi97, Bun97, CM90, MW95,
dBV93, AQM™97, BDHS96, FFLS98, FLS98, AM9S,
DFFT, KS95, AV97]. In a sense, our language en-
hances the horizontal navigation functionality of the
XPointer standard [MD] and incorporates it into a
semistructured query language. The variable bind-
ings extracted by the tree pattern are used to con-
struct the answer. We focus on selection queries,
which extract from the input the list of subtrees to
which one of the variables in the tree pattern binds.
We only consider queries whose condition ranges over
one source/tree only. The generalization to multiple
sources is straightforward, since these can be viewed
as one source obtained by concatenating the multiple
sources (see Examples 2.12 and 2.16). Loto-ql pro-
vides the formal basis for the query and view defini-
tion language XMAS [VLP00], which is implemented
and used within the MIX project [BT99]. A DTD in-
ference algorithm following the steps outlined in this
paper has been implemented for XMAS.?

Results Given a source ltd and a view definition,
we study the problem of constructing a tight 1td for
the view, i.e., an ltd that precisely characterizes the
type structure of trees in the view. Our quest for the
tight 1td quickly highlights two severe limitations of
current DTDs in XML. The first is that DTDs lack
a subtyping mechanism; the repercussions are numer-
ous. For example, there is no tight DTD for the set
of documents from two sources, each with its own
DTD, or for other very simple views. We overcome
these limitations by enhancing ltds (our abstraction
of DTDs) with a simple subtyping mechanism, called
specialization, which is in the spirit of union types.
Despite their simplicity, specialized 1tds encompass
the expressive power of formalisms such as dataguides
[NUWC97, GW9T7] and graph schemas [BDFS97] and
they are of equal power with the formalism proposed
in [BM99, CDSS98].  Interestingly, specialized ltds
turn out to specify precisely the regular tree languages

2The code is available
at http://www.db.ucsd.edu/Projects/MIX/Schemalnference/.
Note that XMAS expresses order conditions using precedence
relationships of the form “the object X precedes the object Y.”
This form of order conditions simplifies to some extent the DTD
inference algorithm.

of finite unranked? trees, see [BKMW].

The second limitation is that DTDs only use regu-
lar languages; this is generally insufficient for describ-
ing views. We can overcome this problem by allowing
context-free languages in 1td specifications. The main
result of the paper is that the two proposed extensions
suffice for selection queries. We provide an algorithm
to construct, from every source ltd and view defined
by a selection query, a tight ltd for the view that uses
context-free languages and specialization. The con-
struction uses an array of classical techniques from
language theory.

The above algorithm provides a solution to the tight
Itd inference problem for selection queries, but comes
at the cost of using the extended ltds. Some applica-
tions may choose to provide ltds that are simply sound
for the view, i.e. 1tds that are satisfied by all trees in
the view but may also allow trees that are not in the
view. If one prefers to give up tightness in return for
using regular ltds (corresponding to existing DTDs),
there is good and bad news. The bad news is that it is
undecidable if a selection view has a tightest regular
Itd. The good news comes in several flavors:

e It can be checked whether a selection view con-
forms to a predefined regular 1td; this makes use
of the tight specialized context-free 1td we can in-
fer. Note that conformance is important for ap-
plications that expect their input, which will be
the XML result of a query/view, to satisfy prede-
fined DTDs.

e Tight specialized regular ltds can be inferred for
selection views in several special cases of practical
interest. For example, one case is when the source
Itd is stratified, i.e. no type uses itself in the 1td
directly or indirectly. Another is when the view
is defined by a query involving only non-recursive
vertical navigation. If specialization cannot be
used, one can still infer in these cases a tightest
regular 1td for the views.

Most query languages for semi-structured data pro-
vide mechanisms for constructing complex XML doc-
uments as answers to queries. For such views, our in-
ference algorithm can be extended to produce a sound
Itd, but no longer tight (due to space limitations, the
extension is presented in the appendix). Intuitively,
tightness is lost due to dependencies among variables
that cannot be captured by specialized context-free
Itds. It remains open if this can be remedied with a
more powerful type system.

Related work Type checking and type inference
are well-studied problems in functional programming
[Mit90, Mit96]. The problem we study is similar in

3In an unranked tree, the number of children of each node is
unrestricted, and the children are ordered.



flavor to type inference. However, despite the superfi-
cial similarity, there do not appear to be substantive
technical connections between DTD inference (which
involves language-theoretic machinery) and classical
type inference in programming languages.

A comprehensive presentation of recent research
in semi-structured data can be found in [ABS99].
Apart from DTDs, notable approaches to specifying
schematic information in semi-structured data include
representative objects and dataguides [NUWC97,
GW97] and graph schemas [BDFS97]. The problems
they address are orthogonal to ours. Inference of
schemas for views is not considered. The “patterns”
in [CDSS98] are a form of dataguide. A limited form
of inference can be accomplished by inferring the pat-
terns that view variables may bind to.

DTDs are used in [MZ98] for schema matching,
which, in turn, is used for data conversion. Specialized
Itds can also support these activities. In [NAM9S],
another approach to inferring a schema from graph
data is proposed, which results in a classification of
the nodes in a class hierarchy.

Like our language, the languages of [AM9S,
CDSS98] control the order of elements in the output.
The language of [AM98] also places conditions on the
order of elements in the input.

Type checking and inference for views defined by se-
lection queries on ordered graph data are considered
in [MS99]. The selection queries return sets of objects
selected from the input using vertical navigation only.
The input data is assumed to satisfy a given DTD.
Types of the output consist of label assignments to
variables of the query. Since the objects in the result
are not ordered, the output type does not describe
the allowed sequences of labels, unlike the types we
consider. Also, [MS99] does not infer tight type de-
scriptions and they do not consider the specialization
of a type as a result of the conditions that are imposed
on it. Type checking in [MS99] consists of verifying if
a given label assignment to the query variables is pos-
sible for some input graph satisfying the input DTD.
Type inference consists of finding all satisfiable label
assignments. The results focus on the complexity of
type checking and inference.

Powerful selection queries on trees are studied us-
ing Attribute Grammars in [NdB98, Nev99] and Query
Automata in [NS99]. The results concern expressive-
ness of the languages and complexity of static analysis
questions such as emptiness, equivalence, and circular-
ity.

A discussion of problems raised by schema infer-
ence in views of semistructured data is presented in
[PV99b]. The notions of sound and tight DTD are
defined, and the need for specialized DTDs is illus-
trated. An algorithm is presented for inferring the
DTD of selection views with no horizontal navigation

and no recursive path expressions.

The tight 1tds inferred by our algorithm for selection
queries provide, as a side-effect, a test of conformance
to a predefined 1td. As discussed earlier, for more com-
plex queries with constructed answers our algorithm
only produces sound (but no longer tight) ltds. Sound
Itds can only provide a sufficient test of conformance
to a predefined 1td. A direct approach to testing con-
formance for a broad class of views is developed in
[MSV], using inverse type inference.

The paper is organized as follows. The next sec-
tion provides a warm-up to the main development. It
introduces the main concepts and notation, considers
several basic properties of Itds used throughout the
paper, and motivates the extensions of 1tds with spe-
cialization and context-free languages. Section 3 in-
troduces the view definition language. Section 4 con-
tains the main results on 1td inference, and discusses
some interesting special cases. An appendix contains
details of some constructions, examples and inference
of sound ltds for loto-gl queries with constructed an-
SWers.

2 Warm-Up

In this section we present the formal framework of
the paper, and motivate the extension of DTDs with
a subtyping mechanism and with context-free gram-
mars.

We assume familiarity with basic notions of lan-
guage theory, including (nondeterministic) finite-state
automata ((n)fsa), context-free grammar (CFG) and
language (CFL), homomorphism, substitution, and se-
quential transducer (e.g., see [HUT9, Gin66]). We will
use basic facts such as closure of regular and context-
free languages under homomorphism, inverse homo-
morphism, intersection with regular languages, substi-
tution with languages of the same kind, and sequential
transducers.

We also use results on regular tree languages and
tree automata. Regular languages of finite binary
trees are surveyed in [GS97]. The unranked case is
discussed in [BKMW]. Regular tree languages have
similar closure properties to regular string languages,
in both the ranked and unranked cases. Empti-
ness of the language accepted by a tree automaton is
PTIME-complete, and inclusion is EXPTIME-complete.
A brief description of tree automata is provided in
Appendix A.

Labeled ordered tree objects A labeled ordered
tree object (loto) is our abstraction of an XML doc-
ument. Each node represents an XML element and
is labeled by the element’s name (type). The list of
children of a node represents the sequence of elements



that make up the content of the node, labeled by their
name.

Definition 2.1 A labeled ordered tree object (loto)
over alphabet* ¥ is a finite tree such that each node
has an associated label in 3 and the set of children of
a given node is totally ordered®.

Given a loto t and a node n of ¢, we denote the label
of n by A(n). Thus, if the sequence of children of n is
ny ...ng then A(ny) ... A(ng) is a word in X*. If n is a
node in a given loto, we denote by tree(n) the subtree
of the loto rooted at n.

Example 2.2 Consider the following “dealer” XML
document and the corresponding loto (L2.53).
<dealer>
<UsedCars>
<ad>
<model>Honda</model>
<year>92</year> UsedCars NewCars
</ad>
</UsedCars> ¢ e$
<NewCars>
<ad>
<model>BMW</model>
</ad>
</NewCars>
</dealer
Note that the loto retains the element name structure
of the XML document. However the string content of
the document is discarded since it plays no role in the
inference problem.

deder

model  year model
(L2.3)

Loto type definitions A loto type definition (1td)
is our abstraction of DTDs. It retains the element
content information provided by DTDs [BPSM]. In
particular, a DTD specifies, using regular expressions,
the sequences of element names that are allowed as
content of elements with a given name. The DTD also
specifies the type of the root. These are formalized as
follows.

Definition 2.4 A loto type definition (ltd) over al-
phabet ¥ consists of a root type in X and a mapping
associating to each a € ¥ a language over 3.

By slight abuse of notation, if d is an 1td over ¥, we
denote by d(a) the language over ¥ associated with a.
We also denote the type of the root by d(root).

The languages provided by an ltd can be specified
by various means, and for simplicity we often blur the
distinction between a language and its specification. If
the languages are regular, they can be represented by
regular expressions over . We call such an ltd regular.
Similarly, an Itd whose languages are context-free (and

4We only consider finite alphabets.
5Thus, each node has a list of children; if there are no chil-
dren, the list is €.

<DOCTYPE dealer [
<VELEMENT dealer (UsedCars,NewCars)>
<IELEMENT UsedCars (ad*)>
<IELEMENT NewCars (adx*)>
<!ELEMENT ad ((model,year) |model)>
1>

Figure 1: An XML DTD corresponding to Exam-

ple 2.5

specified by a CFG or other means) is a context-free ltd.
An Itd is assumed by default to be regular.

The function of a loto type definition is to specify a
set, of valid lotos, analogously to the way a DTD spec-
ifies a set of XML documents conforming to it. A loto
t satisfies an 1td d over X if the root has type d(root)
and for every node n of ¢ with children nq ...ny, the
word A(ni1)...A(ng) is in d(A(n)). The set of lotos
satisfying an ltd d is denoted by T'(d).

Example 2.5 The loto (L2.3) satisfies the ltd below.
For readability, in ltd examples we denote concatena-
tion by comma. The examples specify the root type
and the languages associated to each type name. We
omit specifying a language if it is {e} — e.g., for model
and year below.

root : dealer;

dealer : (UsedCars, NewCars);
UsedCars : ad™;

NewCars : ad™;

ad : (model, year) 4+ model;

Figure 1 provides a corresponding DTD.

(LTD2.6)

Note that, in order for an 1td to be satisfiable by some
loto, the Itd has to provide “exit rules”, i.e. some of
the d(a) must contain €. In the example, d(model) =
d(year) = {e}, and d(UsedCars),d(NewCars) con-
tain €. Clearly, a regular Itd may be viewed as an
extended CFG (in an extended CFG, productions have
regular expressions on the right-hand side, with the
obvious meaning.) The lotos satisfying a given ltd are
the derivations in the corresponding extended CFG.

We say that two ltds d and d' are equivalent if
T(d) = T(d"). An ltd d is tighter than an ltd d' if
T(d) C T(d"). Checking either property turns out to
be PSPACE-complete (the lower bound follows from the
fact that regular expression containment and equiva-
lence are PSPACE-complete [GJT9]).

We will consider throughout the paper sets of lotos
constructed by various means from other sets of lotos
satisfying given ltds. For example, views of lotos sat-
isfying a given 1td generate such new sets. This leads
naturally to the question of which sets of lotos can be
described by ltds. There are two orthogonal require-
ments in order for a set T of lotos to be specifiable by
an ltd:



(i) For each a € ¥, let L, be the language consisting
of all words A(ny)...A(ng) for which ny...ny is
the list of children of some node n with label a in
some loto in T. Then L, has to be regular (or of
appropriate kind for non-regular 1tds).

T must be closed under substitution of subtrees
with the same root type. More precisely, if ¢ is
in T, nis a node in ¢, and n’ is a node in some
loto in T such that A(n) = A(n’), then the loto
obtained from t by replacing the subtree tree(n)
by tree(n’) is also in T.

(i)

We will refer informally to property (ii) as closure un-
der subtree substitution.

Example 2.7 As an illustration of (ii), consider the
singleton set T = {(L2.3)} (see Example 2.2). Clearly,
T wviolates (ii); thus, it cannot be specified by any ltd.
Intuitively, the problem is that no ltd can specify one
structure for the ad in UsedCars and another for the
ad in NewCars. Note that T trivially satisfies (i),
since the language associated to each element name
is finite and therefore reqular.

A set T of lotos may satisfy (ii) and violate (i).

Example 2.8 Consider the set of lotos described by
the following ltd.

root : section;
(LTD2.9) section : intro, section™, conclusion;
Now consider a query that collects all intro and con-
clusion nodes of a given loto and groups them under a
root named result, in exactly the same order in which
they appear in the input. It is easy to see that Lyesyuit
is not a reqular language but it is context-free.

We will say that an 1td d is tight for T if T = T'(d). Tt
is easy to show the following:

Lemma 2.10 A set T of lotos has a tight ltd iff it
satisfies (i) and (i) above.

If T does not have a tight 1td, it is still of interest to
find an “approximate” description of T. A dtd d is
sound for T iff T C T'(d). In general, there are many
Itds that are sound for given T'; among the candidates,
the best would be the tightest sound ltd, if such ex-
ists. The following characterizes the sets T' for which
tightest sound ltds exist.

Lemma 2.11 A set T of lotos over alphabet ¥ has a
tightest sound regular ltd iff each language L, (defined
in (i) above) is regular for all a € 3.

The tightest sound Itd for T satisfying the property in
the lemma is simply the Itd d such that d(a) = L.
Consequently, a set T of lotos cannot have several
incomparable sound ltds that are minimal with re-
spect to tightness. In other words, either there exists
a unique tightest 1td, or for every sound ltd there ex-
ists a strictly tighter sound ltd. For example, given
the following sound ltd for the view of Example 2.8

(@2

root : result; result : (intro 4+ conclusion)*
we can come up with the strictly tighter ltd
root : result;
result : € + intro, (intro + conclusion)*, conclusion
which can be tightened ad infinitum.

Specialized loto type definitions Closure under
subtree substitution seriously limits the specification
power of ltds in many practical cases. Example 2.7
showed a single loto that cannot be described by a
tight 1td. Similarly, union of sets of lotos specified by
two ltds do not generally have a tight 1td, as illustrated
next.

Example 2.12 Consider two sources exporting lotos
conforming to the following ltds.
root : UsedCars;
UsedCars : adx; NewCars : adx;
ad : model, year; ad : model;
Now consider a new source obtained by the concatena-
tion of the two sources under a loto “all”. The tightest
ltd for the new source is listed below; but it is not tight.
root : all; all : UsedCars, NewCars;
UsedCars : ad™; NewCars : ad”
ad : (model, year) + model;
cialized [ltd for the concatenation of the two sources is
shown in Example 2.12.

root : NewCars;

A tight spe-

The following further illustrates the shortcomings of
Itds in describing views.

Example 2.13 Consider the following source ltd and
a view that collects all dealers that sell at least one
used vehicle and groups them under a “used-dealers”
node. The tightest Itd for the view is identical with the
source ltd — modulo renaming dealers to UsedDealers.
Thus, the ltd cannot capture the fact that at least one
“used dealer” ad must be for a used car.

root : dealers; dealers : dealer™;

dealer : ad™; ad : UsedAd + NewAd;
The shortcomings illustrated above have a common
source. They are due to the inability of Itds to carry
typing information across multiple levels of the trees
(lotos) they describe. This is reflected in the closure
under subtree substitution of sets of lotos with tight
Itds. Intuitively, overcoming this limitation requires
the ability to define special cases of a given type. In-
deed, it turns out that this simple idea allows to over-
come the limitations of ltds mentioned above. We next
define specialized ltds.
Definition 2.14 A specialized 1td for alphabet ¥ is a
4-tuple (X,%',d, u) where:
(1) 3,5 are finite alphabets;
(2) d is an ltd over ¥'; and,
(8) 1 is a mapping from ¥’ to X.
Intuitively, ¥/ provides for some a € X3, a set of special-
izations of a, namely those a’ € ¥’ for which p(a’) = a.
Note that p induces a homomorphism on words over
Y/, and also on lotos over ¥/ (yielding lotos over X).



We also denote by p the induced homomorphisms.
Specialized 1tds are denoted by bold letters d,e,f,, etc.

Let d = (3,%,d, 1) be a specialized 1td. A loto t
over X satisfies d if t € p(T(d)).

Example 2.15 The following specialized ltd is tight
for the singleton set {(L2.3)}. For readability, the set
Y/ of Definition 2.14 is omitted (X' implicitly consists
of all symbols on the left hand side of the mappings)
and the mapping p from ' to X is implicit; symbols of
the form a® map to a and symbols without superscripts
map to themselves.

root : dealer;

dealer : (UsedCars, NewCars);

UsedCars : ad®; NewCars : ad™;

ad" : model, year; ad™ : model;

Example 2.16 Following is he tight specialized ltds
for the source obtained by concatenating the two
sources in Frample 2.12.

root : all;

all : (UsedCars, NewCars);

UsedCars : (ad")*; NewCars : (ad™)*;

ad" : model, year;

ad” : model;

Similarly, a specialized ltd can be obtained for the set
described in Example 2.13.

Interestingly, specialized ltds turn out to have the
same descriptive power as the regular tree automata
over unranked finite trees, and so specify precisely the
regular languages of finite, unranked trees. Indeed,
the following is easily shown:

Lemma 2.17 A set of lotos equals T(d) for some spe-
cialized ltd d iff it is a reqular tree language.

It follows that the results on regular tree languages,
such as decidability of emptiness, inclusion, closure
under complementation, etc, also apply to specialized
Itds. Checking if a loto satisfies a fixed specialized Itd
can be done in O(n?), using standard parsing tech-
niques.

3 A query language for lotos

We present a query language for lotos, called loto-
ql, similar in spirit to several query languages re-
cently proposed for XML and the Web. Like
[CDSS98, AM98], our language handles order explic-
itly. We focus here on selection loto-ql queries (full
loto-ql queries are defined in Section D).

A selection loto-gl query is of the form

select X where body

where body is a pattern providing bindings of X and
the other variables to subtrees of the input loto. The

pattern is in the shape of a tree and uses regular ex-
pressions for navigating both vertically and horizon-
tally in the input loto (thus, the query language makes
use of the order on children available in lotos). The
answer is a loto consisting of the list of the subtrees
to which X binds, under a new default root. The sub-
trees are listed in the order in which they occur in a
depth-first, left-to-right traversal of the input loto.

We now define the patterns used in loto-ql queries.
A pattern over alphabet X is a tree with labeled nodes
and edges. The root has outdegree one. A node la-
bel is an expression pg.X1.p1.Xo.p2 ... Xp.pp, k> 0,
where the X; are variables and the p; are regular ex-
pressions over Y. Furthermore, ¢ € p;,0 < i < k.
All nodes have labels, restricted as follows: the root is
labeled by a symbol in 3, and internal nodes must con-
tain at least one variable. Each variable occurs only
once in the body. For simplicity, a regular expression
equal to € is omitted.

An edge outgoing from an internal node n is labeled
by a pair (X, p) where X is a variable occurring in the
label of n and p is a regular expression over 3. The
edge outgoing from the root is labeled simply by a
regular expression p over Y. Intuitively, an edge label
describes vertical navigation in the input loto. For
cach node reached by vertical navigation, the node
label describes horizontal navigation in the list of its
children.

Formally, let B be the body of a loto-ql query over
Y and t be a loto over X, such that the roots of B
and t have the same label. Let Var(B) be the set of
variables in B. A binding is a mapping /3 from Var(B)
to the nodes of ¢ such that S(root(B)) = root(t) and
for each edge in B labeled (X,p) with target node
labeled po.X1.p1.X9.p2 ... Xp.pr there exists a path
with nodes zg ...z, in t where:

® Tog—= [)’(X),

e \11)...XNz,) € p,
has children ¢9... y?o 7L yfk where
A1) - Ai) € pj 0< 5 <k and B(X;) =
vt 1<i<k

1’

o 1,

A binding must satisfy the analogous condition for the
special case of the edge outgoing from the root.

Thus, an edge labeled by (X, p) leads to the nodes
T, in the input loto reachable from the node X by a
path whose node labels spell a word in p. The label
po.-X1.p1.X5.ps ... Xp.pg of the target node of the edge
provides a pattern matched against the sequence of
children of x,,.

Note that the bindings for a given variable are nat-
urally ordered by a depth-first left-to-right traversal
of the input loto.

Example 3.1 Consider the source described by the
ltd of Example 2.8. The following query collects all



intro and conclusion nodes and groups them under a
root named result, in exactly the same order in which
they appear in the input.

X < section*
(Z0(intro+conclusion). X 20

Example 3.2 Next consider the source described by
the following ltd and the query that retrieves all van
or car dealers that sell at least one used vehicle.

root : dealers

dealers : truck, van, RV, car;
truck : dealer™; van : dealer™;
RV : dealer®; car : dealer™;

dealer : ad™; ad : UsedAd + NewAd;

gea
van+car
D (O (deder.D.deder”)

<D,ad>
UsedAd

Beyond the immediate focus of the paper on ltd
inference, we believe that loto-gl can serve as a useful

vehicle for investigating aspects of handling order in
queries for semistructured data.

4 Inferring Itds for selection

views

In this section we present our results on inference of
Itds for views defined by selection loto-ql queries. As
discussed in the previous section, regular ltds are in-
sufficient for describing views defined by selection loto-
ql queries. Moreover, it is not even possible to check if
the view can be specified by a regular ltd, or whether
it can be approximated by a tightest regular ltd:

Theorem 4.1 [t is undecidable, given a selection
loto-ql query q and an ltd d, whether q(T(d)) has a
tight reqular ltd, or whether it has a tightest reqular
Itd.

The proof uses Lemma 2.10 and the undecidability of
whether a cra defines a regular language [HUT79].
For the purpose of enhancing the specification
power of regular ltds, we suggested extending them
in two ways:
(i) adding a specialization mechanism, and
(i) allowing specifications of content more powerful
than regular expressions, such as CFGs.
The main result of this section states that one can
construct tight specialized context-free ltds for all
views defined by selection loto-ql queries, whose in-

put lotos satisfy a given regular 1td®. The result re-
quires developing some technical machinery; most of
the section is devoted to this development.

Basic Concepts and Algorithms

First we describe the ltd inference algorithm for two

queries, ¢ and ¢’, that illustrate several key aspects of

the algorithm. Then we briefly outline the algorithm

for arbitrary selection queries.
q

| |
X0 1p X
i I.Xr !

In query ¢, the pattern of the body says that the
parent of root(X) in the input loto is reachable from
the root of the loto by a path spelling a word in p. The
subtree X is extracted from the content of the parent
by matching the expression [.X.r, so that root(X) is
labeled by the last letter of a word in [ and it is fol-
lowed by a suffix in 7. Query ¢ is the same as ¢,
except that there must also exist a downward path in
p’ originating at root(X).

Satisfiability and validity Before describing how
ltds are inferred for ¢ and ¢’, we make a brief digression
to consider a technical problem that arises in all cases.
This relates to the condition requiring the existence
of a downward path from nodes of a given type. It
occurs as an explicit condition in the body of ¢/, but
also arises in a more subtle form in q.

Consider an 1td d and a regular expression p over X.
Let a be in X, and consider the question of whether
there is a path in p from nodes of type a in lotos
satisfying d. There are three possibilities:

e there is a path in p originating at nodes of type a

in some lotos satisfying d (and then we say that
p is satisfiable at a),

e there is never a path in p originating at a node of
type a in a loto satisfying d (and we say that p is
unsatisfiable at a)

e there is always a path in p originating at a node
of type a in any loto satisfying d (and we say that
p is valid at a).

In the inference algorithm, we will need to check
whether a path p is satisfiable or valid at some type
a. We can show the following useful fact:

Lemma 4.2 Given a regular ltd d, a reqular path ex-
pression p over ¥ and a € X: (i) it can be checked in
PTIME whether p is (un)satisfiable at a; (ii) it can be
checked in EXPTIME whether p is valid at a.

6The inference algorithm also works for inputs described by
specialized regular 1tds, such as those obtained by concatenating
multiple sources, each with its own regular ltd (as in Example
2.12).



Satisfiability and validity can be reduced to questions
involving regular tree languages. To see this, note that
the set of lotos rooted at a and satisfying d forms a reg-
ular tree language Rg4, for which a non-deterministic
top-down tree automaton (for unranked trees) can be
constrcted from d in PTIME. Similarly, the set of lotos
rooted at a for which there exists a path in p start-
ing from the root is also a regular tree language R,
for which an automaton can be constructed from p
in PTIME. Thus, satisfiability of p at a is reduced to
checking non-emptiness of By N R, (which can be
done in PTIME) and validity is reduced to checking
that Ry C R, (which takes EXPTIME).

Type Tightening Next, suppose a path p is satisfi-
able but not valid at type a defined by an 1td d. This
means that a proper subset of the lotos satisfying d
and having roots of type a have a path in p starting
at the root. For the inference algorithm, we will need
to precisely describe this set of lotos. We can achieve
this by constructing a specialized ltd that provides a
tightening of d in which p becomes valid at a. To see
that this is is possible, note that the desired tightened
set of lotos equals Rg N R,, which is a regular tree
language. By Lemma 2.17, there exists a specialized
Itd specifying it. We outline its construction in Ap-
pendix B, and denote the resulting specialized 1td by
tighten(a, d, p).

Vertical and horizontal navigation We now re-
turn to the example queries ¢ and ¢/, which involve
simple vertical and horizontal navigation. Consider
first query ¢. Suppose ¢ and the input Itd d are
over alphabet ¥. The Itd d, for the view defined
by q is the following. The type of the root is a de-
fault root. Suppose for simplicity that root ¢ 3 (the
other case is handled using specialization). For a € ¥,
dq(a) = d(a). The language d4(root) is a language
over Y, denoted Lx and defined by the following ex-
tended CFG G. Let f, be an fsa over ¥ accepting p;
its state transition function is 6. For each state h in
fp» let pp, be the regular language accepted by f, with
start state h. The nonterminals of G are the pairs
(h,a) where h is a state of f, and a € XU {root}. The
start symbol is (s, root) where s is the start state of f,.
The set of terminal symbols of G is ¥. We describe
the productions of G in two steps. First, consider a
nonterminal (h,a), where h is a non-accepting state
of fp. For each such (h,a), G contains the following
production:
(hoa) — on(d(a))
where o}, is a substitution defined as follows. For b € X
and b’ = 6(h,b):
o gn(b) = {(N,b)} if pp is valid at b,

o ap(b) = {e, (W, b)} if pp is satisfiable but not
valid at b, and

e 0,(b) = {e} if pps is unsatisfiable at b.

Note that in the case considered above where h is non-
accepting, the productions only have to account for
vertical navigation along p, since no horizontal match-
ing occurs. Now suppose h is an accepting state of
fp- Things are more complicated, because the pro-
duction has to also account for horizontal matching.
This can be done by applying a sequential transducer
ty to d(a), which simultancously applies the substi-
tution o and performs the matching of 1. X.r against
d(a). The transducer works as follows. Given an input
word w, it outputs o, (b) for each symbol b of w which
does not match [.X.r. If a match occurs, t;, outputs
bop(b). To detect a match, ¢, identifies the last let-
ter of each prefix of w which is in [ and for which the
remainder suffix is in 7 (the nondeterminism arises in
guessing whether or not the suffix from a current posi-
tion is in r, and acceptance requires checking that all
guesses along the way were correct). Since d(a) is reg-
ular and regular languages are closed under sequential
transducers [Gin66), t(d(a)) is regular. The grammar
G contains, for each (h,a) where h is accepting, the
production

(h,a) — tp(d(a)).

The grammar G can be effectively constructed from
d and ¢ in EXPTIME (polynomial in d and exponential
in q). The construction is illustrated in Example C.1
in the appendix. In summary, the view defined by
q on inputs satisfying d has a tight context-free 1td
constructible in EXPTIME.

Next, consider the query ¢'. It is very similar to g,
with the difference that the nodes of type a € X to
which X binds must be restricted to ensure the ex-
istence of the downstream path in p’. This requires
the 1td tightening outlined earlier, and highlights the
need for specialization. The language Lx constructed
for ¢ must be modified using the specialized ltds
tighten(a,p’,d). More precisely, let d’ be the special-
ized 1td defined as folllows. d’ defines the content of
internal nodes by tighten(a,p’,d), a € 3 (observe that
these specialized ltds agree on the types they share).
The content of the root is defined by the language
0(Lx) where o is the substitution defined next. We
denote by a’ the root type in tighten(a,p’, d):

e o(a) ={a'} if p/ is valid at a,

e o(a) = {¢,a’} if p’ is satisfiable but not valid at
a, and

e o(a) = {e} if p’ is unsatisfiable at a.

It is easy to verify that d’ is a tight specialized context-
free 1td for ¢’(T(d)). The construction is illustrated in
Example C.2 in the appendix.



Extension to Full Selection Queries

The above discussion contains in a nutshell the basic
ingredients of our 1td inference algorithm for selection
views. We now outline the main steps in the full al-
gorithm, omitting many details.

Satisfiability and Tightening Revisited We
have seen in the previous discussion that one can test
if a regular path expression p is satisfiable or valid at
a € 3, given a regular 1td d (see Lemma 4.2). We
have also seen how a specialized regular ltd can be
constructed to “tighten” a type definition in order to
ensure the existence of a downward path in p from
nodes of that type. Both results can be extended to
arbitrary patterns: for each type a, regular 1td d, and

—

loto-gl query body B(X), all over X, one can test in

PTIME whether B(X) is satisfiable at a, and in EXP-
TIME whether B(X) is valid at a (where satisfiability
and validity of a pattern at a are the obvious exten-
sions of the notions we defined earlier for regular path
expressions). Furthermore, one can construct a spe-
cialized regular ltd tighten(a,d, B(X)), whose size is
polynomial in d but exponential in B (X ) and is satis-
fied precisely by the lotos ¢t € T(d) with root type
a, in which there exists a binding of B(X). As a
useful side effect, the construction provides, for each
variable X in the body, a subset ¥ x of the types of
tighten(a,d, B(X)) to which X may bind.

Construction of the specialized cF Itd Consider
a selection loto-ql query q over 3, of the form select X
where B(X), and a regular 1td d for the inputs to the
query. We wish to compute Lx. We proceed in three
stages. For each variable Y in B()Z: ) let us denote
by By (X) the subpattern of B(X) occuring down-
stream from Y. We first compute, for each type a € 3

such that By(X ) is satisfiable at a, the tightening

—

tighten(a,d, By (X)). We next consider the path in

B(X) leading from the root to X. This is of the fol-

<X1ap2>

lowing form. @
(X1, Pk

l; and r; may contain additional variables, with their
own downstream patterns. The language for Lx is
computed by an extension of the technique used for
the example query ¢'. Essentially, the ith step of the
algorithm computes the language Lx,,, using the lan-
guage Lx, computed in the previous step. However,
this construction of the grammar for Ly is compli-
cated by three main factors:

In the above, each of the

e the transducer performing horizontal matching
must take into account the presence of other vari-
ables with their own downstream patterns in I;
and 7;. For each such variable Y, the trans-
ducer has to take into account whether the pat-
tern By (X) is satisfiable or valid at cach type
against which Y is matched.

e The transducer must perform a tightening step
when each variable X; is matched against some
type a. If By, (X) is valid at a, the trans-
ducer outputs the root type corresponding to
tighten(a,d, Bx,(X)) (together with the current
state information). If By, (X) is satisfiable but
not valid at a, the transducer nondeterministi-
cally outputs € or the root type corresponding to
tighten(a,d, Bx,(X)) (again, together with the
state information).

e to account for vertical navigation, the nontermi-
nals of the grammar must keep track simultane-
ously of the current possible states in all fsa for
the paths pq, ..., pr. Whenever an accepting state
of fp, is reached, the transducer step is applied
and the start state of f,, , is added to the set of
possible states.

The development in this section leads to the follow-
ing main result:

Theorem 4.3 Given a reqular ltd d and a selection
loto-ql query q, one can effectively construct a tight
specialized context-free ltd for q(T'(d)).

The complexity of the construction is EXPTIME in
the general case and the size of the inferred 1td is poly-
nomial in the input Itd and exponential in the query.
It remains open whether the complexity is tight.

Remark 4.4 In this section we assumed that input
lotos are described by reqular ltds. Now suppose that
the inputs are described instead by specialized context-
free ltds. This would happen if defining a loto-ql view
on top of another loto-ql view. Also, the concatenation
of multiple sources into a single source is described by
a specialized reqular ltd. Qur inference algorithm and
Theorem 4.8 generalize easily to such input ltds.

Conformance The ltd inference algorithm allows to
solve an important related problem: checking confor-
mance of a selection view definition to a predefined 1td.
This is of interest, for example, when data satisfying
some ltd must be translated in a form that satisfies
another 1td (see also the discussion in [Suc]). We can
show:

Corollary 4.5 It is decidable, given a reqular ltd d,
a selection loto-ql query q, and another regular ltd d’,

whether q(T'(d)) C T(d').



The proof uses our inference algorithm, the decid-
ability of whether a context-free language is included
in a regular language, and the decidability of inclusion
of regular tree languages. The complexity is EXPTIME.

Special cases We have seen that describing the
view defined by a loto-ql query on inputs satisfying
a given regular Itd requires the use of more powerful
context-free ltds. There are however special cases of
practical interest when specialized regular ltds are suf-
ficient for describing loto-ql views. The special cases
restrict either the input regular 1td or the selection
loto-ql query defining the view.

The restriction on the input ltds is quite natural.
Let us call an Itd stratified if the dependency graph
among types is acyclic (the dependency graph for an
Itd d has an edge from b to a if b occurs in d(a)). For
example, (LTD2.6) is stratified but (LTD2.9) is not.

The restriction on queries disallows recursion in ver-
tical navigation”. That is, regular expressions occur-
ring as labels of edges do not use Kleene closure. The
regular expressions used for horizontal navigation may
continue to use Kleene closure. Let us call this class of
queries vertically nonrecursive. By revisiting the in-
ference algorithm in the previous section for the above
special cases, we are able to show the following.

Theorem 4.6 Given a reqular ltd d and a selection
loto-ql query q such that d is stratified or q is verti-
cally nonrecursive, one can effectively construct a tight
specialized regular ltd for q(T(d)).

The complexity of the construction and the size of the
resulting 1td remain exponential.

In both cases just considered, specialization is still
generally required. However, it easily seen (using
Lemma 2.11), that the resulting views always have
a tightest regular 1td which can provide an approxi-
mate description without specialization, and can be
effectively constructed. Moreover, in particular cases,
tight regular 1tds may exist for the view. It turns out
that this can be tested, and a tight regular 1td can
be effectively constructed if such exists. Contrast this
with the general case, where the existence of a tight
(or even tightest) regular ltd for a given view is unde-
cidable (Theorem 4.1).

Corollary 4.7 (i) Given a reqular ltd d and a selec-
tion loto-ql query q such that d is stratified or q is
vertically nonrecursive, q(T(d)) has a tightest regular
ltd which can be effectively constructed. (ii) Given a
regular Itd d and a selection loto-ql query q such that d
is stratified or q is vertically nonrecursive, it is decid-
able in EXPSPACE whether q(T(d)) has a tight reqular
ltd, and if so such an ltd can be effectively constructed.

7Some languages, such as MSL and YATL [PACMO96,
CDSS98] do not provide recursive vertical navigation in the first
place.
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Extensions We briefly discuss how our algorithm
can be extended for more powerful queries: (i) selec-
tion queries with more powerful selection conditions,
and (i) loto-ql queries with the same selection con-
ditions but constructed answers. In regard to (i), it
turns out that our algorithm can be extended to se-
lection queries with much more general selection con-
ditions than those of loto-ql. This is indicated by the
following result, shown by an extension of our tech-
nique. Recall that Monadic Second Order logic (MSO)
is first-order logic extended with set variables.

Theorem 4.8 Let ¢(x) be an MSO formula over la-
beled unranked trees, with one free first-order variable
x. For each loto t, let {ny,...,ng} ={z |t E p(x)},
where ny ...ny is the order of occurrence of the nodes
n; in the pre-order traversal of t. Let string,(t)
A(n1) ... X(ng). For each regular tree language R, the
string language string,(R) = {string,(t) | t € R} is
context-free.

The above allows extending our inference algorithm
to produce a tight specialized context-free 1td for se-
lection queries whose selection condition can be de-
scribed in MSO. Note that these coincide with the
unary queries over unranked trees definable by the
Extended Attribute Grammars of [Nev99] and by the
Strong Query Automata of [NS99].

Lastly, consider extension (ii). General loto-gl
queries (not restricted to selection queries), construct
new lotos using a group-by construct defining nested
lists. The 1td inference algorithm can be extended to
general loto-ql queries. However, the ltd it produces
is sound but no longer tight for the view. The reasons
for this failure go beyond the algorithm itself: there
can be no tight specialized context-free 1td for views
defined by general loto-ql queries, or for that mat-
ter by any semistructured query language that we are
aware of and is able to construct objects. The sound
Itd produced by our algorithm can still be used in a
variety of ways. For example, it provides a sufficient
test of conformance to a predefined 1td. We outline

the extension of the inference algorithm in Appendix
D.

5 Conclusion

We presented a Data Type Definition inference al-
gorithm that produces tight specialized context-free
DTDs for selection views of XML data. We used lo-
tos and Itds as formal abstractions of XML documents
and DTDs. The language loto-ql used for view defini-
tions captures the common core of several query lan-
guages that have been proposed for XML. As a prac-
tically important side effect, the ltds produced by the
inference algorithm can be used to test conformance
of selection views to predefined ltds.
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Appendix

A Regular tree languages and
tree automata

We informally review the notion of regular tree lan-
guage and tree automaton. Tree automata are devices
whose function is to accept or reject their input, which
we assume is a complete binary tree with nodes labeled
with symbols from some finite alphabet Y. There are
several equivalent variations of tree automata. A non-
deterministic top-down regular tree automaton over 3
has a finite set @ of states, including a distinguished
initial state g and an accepting state g;. In a com-
putation, the automaton labels the nodes of the tree
with states, according to a set of rules, called tran-
sitions. An internal node transition is of the form
(a,q) — (¢',q"), for a € . Tt says that, if an in-
ternal node has symbol a and is labeled by state q,
then its left and right children may be labeled by ¢’
and ¢”, respectively. A leaf transition is of the form
(a,q) — gy for a € ¥. It allows changing the label of
a leaf with symbol a from ¢ to the accepting state g;.
Each computation starts by labeling the root with the
start state qg, and proceeds by labeling the nodes of
the trees non-deterministically according to the transi-
tions. The input tree is accepted if sorme computation
results in labeling all leaves by g;. A set of complete
binary trees is reqular iff it is accepted by some top-
down tree automaton. Regular tree languages have
similar properties to regular string languages, includ-
ing closure properties and decidability of emptiness
(in PTIME), inclusion (in EXPTIME), etc. Regular lan-
guages of finite binary trees are surveyed in [GS97].
An analogous extension to the case of unranked trees
is discussed in [BKMW]. The above results extend to
the unranked case.

B Construction of a tightened
specialized 1td

We outline the construction of a tight specialized 1td
for the set of lotos rooted at a, satisfying a given 1td
d, for which there exists a downward path in p from
the root. Let f, be an fsa over ¥ accepting p, with
start state s, set of final states F', and state transition
function 6. For each state h in fy, let p, be the reg-
ular language accepted by f, with start state h. The
specialized 1td is d' = (X, %', d’, 1) where:
o Y/ Y U {(h,b) h € states(f,),b
Y, and py, is satisfiable at b};
o /i((h,b)) = band u(b) =bforb e ¥ and h €
states(fp);

€
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e d'(root) = (s,a);

o d'(b) = d(b) for b e X;

o d'({f,b)) =d(b) if f is accepting;

o d'((h,b)) = p7Hd(b) NX*XL,5T 0 hois
not accepting, where 3/ ., = {(h,a) | ¥ =

8(h,a) and p), is satisfiable at a}.

Note that the last item simply ensures that the content
of (h,b) has at least one type allowing to continue
successfully along a path in p. The following is easily
seen:

Lemma B.1 A loto with oot of type a satisfies the
specialized ltd A’ iff it satisfies d and there exists a
path in p starting at its root.

Thus, p is valid at the root of lotos satisfying d’. We
denote the specialized 1td d’ tightening a as described
by tighten(a,d,p).

C Examples for inference algo-
rithm

Example C.1 Consider the query and the source de-
scribed in Example 3.1.  The automaton f, of the

path p = sectionx is SBC'[IOH. The automa-

ton also contains a sink state L (omitted) where all
non-indicated transitions are directed. The procedure
described in Section 4 yields the following grammar
for Lx:

(1,root) —

intro.oy (intro).(oq (section))*.conc.oq (conc)
(1, section) —

intro.oy (intro). (o (section))*.conc.oq (conc)
(1,intro) — €
(1, conc) — €

Since oy (section) = {(1,section)}  and
o1(intro) = oy(conc) = {e}, the above simplifies
to

(1,root) — intro((1, section))*conc
(1, section) — intro((1, section))*conc

This generates essentially the words of well-balanced
paranthesis (where intro serves as open paranthesis
and conc as closed paranthesis).

Example C.2 Consider the query and source lid
(call it d) of Example 5.2. The automaton f, for

p = (van + car) is The language py
accepted by f, starting from state 1 is van + car, the
language ps is €, and p; = 0. The grammar for Lp



has start symbol (1,root) and the following produc-
tions:

(I,root) — o (truck) + oa(van) +
o1 (RV) + og(car)

(2,van) — (dealer.o (dealer))*

(2,car) — (dealer.o (dealer))*

where o9(van) {(2,van)}, og(car) = {(2,car)},
o (truck) o1 (RV) {€} (since pg is valid at
van and car and p, is unsatisfiable at truck and RV ).
Thus, the language Lp is simply dealer™. Finally, we
must modify Lp to take into account the conditions
that the downwards pattern imposes on dealer trees.
The specialized ltd tighten(dealer,d, ad.UsedAd) has
root dealer®™ with content ad*ad“ad* where ad™ has
content UsedAd. Thus, the final substitution o is de-
fined by o(dealer) = dealer™. In summary, the final
specialized ltd for the query is:

root : (dealer)*
dealer® : ad*ad“ad*
ad® : UsedAd

ad : UsedAd + NewAd

D Loto-ql with constructed an-
swers

We outline an extension of our ltd inference algorithm
for general loto-ql queries (not restricted to selection
queries), which construct new lotos using a powerful
group-by construct defining nested lists. The inference
algorithm produces a sound context-free specialized
Itd for the answers to such queries.

Loto-ql with constructed answers
loto-ql query is of the form

construct H(X)

where B ()2 )

In the above, B(X ) is called the body of the query,
and H(X) the head. The body is as described for
selection loto-ql queries. The head is an ordered la-
beled tree. It specifies how to build a new loto using
the bindings provided by the body of the query. The
head is itself a loto, augmented with so called group-by
labels. Ignoring the group-by labels, which we discuss
shortly, the nodes of the loto are labeled by a symbol in
the alphabet, or by a term. A term is a variable X or
an expression type(X) (denoting the type of root(X)).
The set of terms using variables from the body B(X)
is denoted Terms(B(X)). The root is always labeled
by a symbol. Internal nodes can only be labeled by
a symbol or by a term type(X). Thus, only leaves of
the loto can be labeled by X (recall that variables X
bind to entire subtrees in the input). We usually de-
note terms by 11,75, ... Tk.

A general

We call a tree as above

parameterized (by the terms it contains), and make
the parameters explicit by writing ¢(13,...,T%).

We next describe group-by labels. Each group-
by label is a (possibly empty) sequence of distinct
terms in Terms(B(X)). Group-by labels are de-
noted [T} ...Tg]. Similarly to logical quantification,
the scope of a group-by label of a node is the sub-
tree rooted at that node. A group-by labeling must
satisfy the following: (i) the root has group-by label
6%, and (ii) every occurrence of a term T in the head
is in the scope of some group-by label containing T
We now have all the ingredients for defining the head
of a query: the head consists of a parameterized tree
together with a group-by labeling.

Given a query with body B(X) and head H(X),
the answer to the query on given input is constructed
from the set of bindings B of variables satisfying the
pattern B(X) (sce definition of binding in Section
3). Each binding 8 € B extends to terms type(X)
in the obvious way: if t is an input loto with la-
beling A and [ is a binding for the variables, then
B(type(X)) A(root(B(X))). The answer to the
query is a loto constructed by structural recursion on
H(X) as follows. The recursion uses partial bindings
of the variables. The partial binding associated with
the root is empty. Each subtree (T ...T) whose
root has group-by label [T} ...Ty] and whose ances-
tors group-by variables are instantiated by a partial
binding « is recursively replaced by a list of subtrees
consisting of one isomorphic copy of t(5(T1) ... 3(T))
for each restriction  of some binding in B that extends
a to Ty, ..., Tx. The order of the subtrees in the list
is given by the lexicographic order of the bindings (for
terms of the form type(X), assume a default ordering
of the types). In view of the definition of group-by
labeling, it is clear that the above procedure yields a
loto.

Example D.1 Consider a “dealers” input containing
car ads, partially described by the following ltd piece:

root : dealers;

dealers : dealer®; dealer : name, used”, new™,;

used : (foreign + domestic + sedans + RV s);

new : (foreign + domestic + sedans + RV s);

foreign : model, (year + ¢€);

domestic : model, (year + €);
Now consider the query below (the head is left of the
arrow). The query retrieves the domestic and foreign
new car ads, which bind to T, along with the names D
of the corresponding dealers. The answer restructures
the input by classifying the ads into a list of “domes-
tic” lotos, which is followed by a list of “foreign” lotos
(since type(T) can only be “domestic” or “foreign”).
In particular, there is one “domes tic” loto for each
dealer who sells at least one domestic car and simi-

14

SEmpty labels are omitted in examples.



larly for “foreign”. FEach “domestic” loto contains a
list of all “domestic” ads published by the specific deale
r. The list is followed by the name D of the dealer;
the “foreign” loto is similar. Note that we pick the full
ads but only the dealer name nodes in the answer.
dealers

dealer
type(T).D]) ¢ hame.D.used* .ne Anew* )

T B ogthe

[(forei gn+domestic).T ]

Ltd inference for general loto-ql queries The
Itd inference algorithm we described for selection
queries can be extended to general loto-ql queries.
However, the 1td it produces is sound but no longer
tight for the view. The sound Itd it produces can still
be used in a variety of ways. For example, it pro-
vides a sufficient test of conformance to a predefined
Itd. Before outlining the extension of the inference
algorithm, we briefly discuss its failure to provide a
tight 1td for general loto-ql queries. Unfortunately,
the reasons for this failure go beyond the algorithm
itself: there can be no tight specialized context-free
Itd for views defined by general loto-ql queries. This
is illustrated next.

Example D.2 The following query always produces
in the answer lists of length n(n — 1)/2 which cannot
be described by a contexl-free language.

root

a[XVY]

Similarly, consider the query

It generates lists of the form a™b™c™ which is not a

contezt free language.

We next describe the extension of our 1td inference
algorithm to general loto-ql queries. We use the nota-
tion developed in our presentation of the algorithm in
Section 4. Let ¢ be a loto-ql query and d a regular ltd
for the input. When considering the group-by struc-
ture of the query head, it will be necessary to compute
the languages Lx for variables X in the context of a
partial instantiation of the terms in Terms(B) (the
ones in whose group-by scope X occurs). The infer-
ence algorithm for selection queries can be adapted to
this case by first tightening the input 1td d with re-
spect to the partially instantiated body. For a partial
assignment A of types to variables, let Lx(\) denote
the language Lx in the context of \. More precisely,
Lx()\) is Lx for the input ltd tightened with respect

—

to B(A(X)), in which each X in the domain of A is

—

replaced by A(X) in B(X). Similarly, ¥x (A) denotes
the possible types of roots of subtrees to which X can
bind in the context of .

To define a sound specialized 1td for the answers to
q, it is clearly sufficient to infer the language L,, corre-
sponding to each node n in the head. Recall that each
node n generates a list, in accordance to its group-by
label. The list also depends on the context provided
by each assignment A of types to the variables Y in
whose group-by scope n occurs. Let A be a fixed type
assignment for Y. First, suppose n has empty group-
by label. If n is a symbol a, L, = {a}. If n is a term
X or type(X), L, = Xx ().

Now consider the more interesting case when n has
nonempty group-by label Z = [Z1 ... 7). We need
to consider the possible types of the bindings for A
in the lexicographic order of the bindings. This can
be viewed as a language Lz over an alphabet with
symbols of the form [Z; : a1 ...Zy : ag|, where the a;
are types. If k = 1, the language L is Lz, (\). If
k > 1, computing the language Lz is more compli-
cated, since it is not determined by the languages for
cach individual Z;. This is illustrated in Example D.2
(ii), where Ly = Ly = Lz = bt but Lxyz is con-
strained to contain, for each of n occurrences of X, n
occurrences of Y and n occurrences of Z. However,
one can use the languages for each Z; to obtain an
approximation ZZ containing Lz. The language ZZ
is computed from the languages Lz, (A;), 1 < i < k,
where each Lz, ();) is defined relative to a context A;
(augmenting A) provided by a type assignment for Z;,
j <. The language ZZ is obtained using an appropri-
ate sequence of substitutions. For instance, if k = 2,
the language Ly, z, is 7(Lz,) where 7 is the substitu-
tion on Xz, defined by

T(0) = {[Z1:0,Z2:b1]...[Z1:b,Z5: by] |
b b € Lz, (Ao)}

where A\ assigns b to 7.

To make the context for EZ explicit, we denote the
language Lz in context A by Lz()).

Now suppose n is a symbol a. Then L, (\) is con-
tained in A(Lz(X)) where h is the homomorphism
mapping every symbol of ZZ()\) to a. Next, sup-
pose n is a variable Z; in Z. Then Ly,(\) is con-
tained in A(L z(\)) where h is the homomorphism de-
fined by h([Z1 : a1...7Z : ag]) = a; for each sym-
bol [Z1 : a1...Zy : ag] of Lz(X). The case when
n is a term type(Z;) is similar. The inference mech-
anism we described proceeds by structural recursion,
with the appropriate context A\ passed from parents to
children. As a final step, the languages with respect
to the various contexts are used to construct a single
specialized 1td encompassing a “case analysis” by the
relevant contexts. It can be shown that the Itd con-
structed above is sound for ¢(T'(d)). For instance, our



algorithm yields in Example D.2 (ii) the 1td describing
the content of the root as a*b*c*.

In addition to soundness, the 1td produced by our
algorithm satisfies a practically appealing notion of
tightness. Suppose each group-by label in ¢ uses only
a single term. Then the algorithm allows to infer tight
Itds for the lists induced by each node in the head of
q. We call such an ltd locally tight. Local tightness
is practically significant, because it provides precise
descriptions of portions of the answer which are intu-
itively meaningful.
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